分数阶拉普拉斯方程的直接运动球

IF 1.7 2区 数学 Q1 MATHEMATICS
Congming Li , Meiqing Xu , Hui Yang , Ran Zhuo
{"title":"分数阶拉普拉斯方程的直接运动球","authors":"Congming Li ,&nbsp;Meiqing Xu ,&nbsp;Hui Yang ,&nbsp;Ran Zhuo","doi":"10.1016/j.jfa.2025.111010","DOIUrl":null,"url":null,"abstract":"<div><div>This paper works on the direct method of moving spheres and establishes a Liouville-type theorem for the fractional elliptic equation<span><span><span><math><msup><mrow><mo>(</mo><mo>−</mo><mi>Δ</mi><mo>)</mo></mrow><mrow><mi>α</mi><mo>/</mo><mn>2</mn></mrow></msup><mi>u</mi><mo>=</mo><mi>f</mi><mo>(</mo><mi>u</mi><mo>)</mo><mspace></mspace><mspace></mspace><mspace></mspace><mspace></mspace><mspace></mspace><mspace></mspace><mtext>in </mtext><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span></span></span> with general non-linearity. One of the key improvements over the previous work is that we do not require the usual Lipschitz condition. In fact, we only assume the structural condition that <span><math><mi>f</mi><mo>(</mo><mi>t</mi><mo>)</mo><msup><mrow><mi>t</mi></mrow><mrow><mo>−</mo><mfrac><mrow><mi>n</mi><mo>+</mo><mi>α</mi></mrow><mrow><mi>n</mi><mo>−</mo><mi>α</mi></mrow></mfrac></mrow></msup></math></span> is monotonically decreasing. This differs from the usual approach such as Chen-Li-Li (Adv. Math. 2017), which needs the Lipschitz condition on <em>f</em>, or Chen-Li-Zhang (J. Funct. Anal. 2017), which relies on both the structural condition and the monotonicity of <em>f</em>. We also use the direct moving spheres method to give an alternative proof for the Liouville-type theorem of the fractional Lane-Emden equation in a half space. Similarly, our proof does not depend on the integral representation of solutions compared to existing ones. The methods developed here should also apply to problems involving more general non-local operators, especially if no equivalent integral equations exist.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"289 8","pages":"Article 111010"},"PeriodicalIF":1.7000,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The direct moving sphere for fractional Laplace equation\",\"authors\":\"Congming Li ,&nbsp;Meiqing Xu ,&nbsp;Hui Yang ,&nbsp;Ran Zhuo\",\"doi\":\"10.1016/j.jfa.2025.111010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper works on the direct method of moving spheres and establishes a Liouville-type theorem for the fractional elliptic equation<span><span><span><math><msup><mrow><mo>(</mo><mo>−</mo><mi>Δ</mi><mo>)</mo></mrow><mrow><mi>α</mi><mo>/</mo><mn>2</mn></mrow></msup><mi>u</mi><mo>=</mo><mi>f</mi><mo>(</mo><mi>u</mi><mo>)</mo><mspace></mspace><mspace></mspace><mspace></mspace><mspace></mspace><mspace></mspace><mspace></mspace><mtext>in </mtext><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span></span></span> with general non-linearity. One of the key improvements over the previous work is that we do not require the usual Lipschitz condition. In fact, we only assume the structural condition that <span><math><mi>f</mi><mo>(</mo><mi>t</mi><mo>)</mo><msup><mrow><mi>t</mi></mrow><mrow><mo>−</mo><mfrac><mrow><mi>n</mi><mo>+</mo><mi>α</mi></mrow><mrow><mi>n</mi><mo>−</mo><mi>α</mi></mrow></mfrac></mrow></msup></math></span> is monotonically decreasing. This differs from the usual approach such as Chen-Li-Li (Adv. Math. 2017), which needs the Lipschitz condition on <em>f</em>, or Chen-Li-Zhang (J. Funct. Anal. 2017), which relies on both the structural condition and the monotonicity of <em>f</em>. We also use the direct moving spheres method to give an alternative proof for the Liouville-type theorem of the fractional Lane-Emden equation in a half space. Similarly, our proof does not depend on the integral representation of solutions compared to existing ones. The methods developed here should also apply to problems involving more general non-local operators, especially if no equivalent integral equations exist.</div></div>\",\"PeriodicalId\":15750,\"journal\":{\"name\":\"Journal of Functional Analysis\",\"volume\":\"289 8\",\"pages\":\"Article 111010\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Functional Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022123625001922\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022123625001922","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了运动球的直接法,建立了具有一般非线性的分数阶椭圆方程(−Δ)α/2u=f(u)的liouville型定理。与之前的工作相比,一个关键的改进是我们不需要通常的利普希茨条件。实际上,我们只假设f(t)t−n+αn−α是单调递减的结构条件。这与chen li - li (Adv. Math. 2017)等通常的方法不同,后者需要f上的Lipschitz条件,或者chen li - zhang (J. Funct.)。Anal. 2017),它依赖于结构条件和f的单调性。我们还使用直接移动球方法在半空间中给出分数阶Lane-Emden方程的liouville型定理的替代证明。同样,我们的证明不依赖于解的积分表示,而不是现有的解。这里开发的方法也应该适用于涉及更一般的非局部算子的问题,特别是如果不存在等效的积分方程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The direct moving sphere for fractional Laplace equation
This paper works on the direct method of moving spheres and establishes a Liouville-type theorem for the fractional elliptic equation(Δ)α/2u=f(u)in Rn with general non-linearity. One of the key improvements over the previous work is that we do not require the usual Lipschitz condition. In fact, we only assume the structural condition that f(t)tn+αnα is monotonically decreasing. This differs from the usual approach such as Chen-Li-Li (Adv. Math. 2017), which needs the Lipschitz condition on f, or Chen-Li-Zhang (J. Funct. Anal. 2017), which relies on both the structural condition and the monotonicity of f. We also use the direct moving spheres method to give an alternative proof for the Liouville-type theorem of the fractional Lane-Emden equation in a half space. Similarly, our proof does not depend on the integral representation of solutions compared to existing ones. The methods developed here should also apply to problems involving more general non-local operators, especially if no equivalent integral equations exist.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.20
自引率
5.90%
发文量
271
审稿时长
7.5 months
期刊介绍: The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published. Research Areas Include: • Significant applications of functional analysis, including those to other areas of mathematics • New developments in functional analysis • Contributions to important problems in and challenges to functional analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信