{"title":"Navier-Stokes方程各向异性Lebesgue空间的边规则判据","authors":"Yanqing Wang , Wei Wei , Gang Wu , Daoguo Zhou","doi":"10.1016/j.jde.2025.113351","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we are concerned with the critical mixed norm regularity of Leray-Hopf weak solutions of the Navier-Stokes equations in three dimensions and higher dimensions. It is shown that <span><math><mi>u</mi><mo>∈</mo><msup><mrow><mi>L</mi></mrow><mrow><mo>∞</mo></mrow></msup><mo>(</mo><mn>0</mn><mo>,</mo><mi>T</mi><mo>;</mo><msup><mrow><mi>L</mi></mrow><mrow><mover><mrow><mi>q</mi></mrow><mrow><mo>→</mo></mrow></mover></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo><mo>)</mo></math></span> with <span><math><munderover><mo>∑</mo><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>n</mi></mrow></munderover><mfrac><mrow><mn>1</mn></mrow><mrow><msub><mrow><mi>q</mi></mrow><mrow><mi>i</mi></mrow></msub></mrow></mfrac><mo>=</mo><mn>1</mn></math></span> ensure that Leray-Hopf weak solutions are regular. A new ingredient is <em>ε</em>-regularity criterion derived by the De Giorgi iteration technique under this critical regularity in high spatial dimension.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"438 ","pages":"Article 113351"},"PeriodicalIF":2.3000,"publicationDate":"2025-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the borderline regularity criterion in anisotropic Lebesgue spaces of the Navier-Stokes equations\",\"authors\":\"Yanqing Wang , Wei Wei , Gang Wu , Daoguo Zhou\",\"doi\":\"10.1016/j.jde.2025.113351\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we are concerned with the critical mixed norm regularity of Leray-Hopf weak solutions of the Navier-Stokes equations in three dimensions and higher dimensions. It is shown that <span><math><mi>u</mi><mo>∈</mo><msup><mrow><mi>L</mi></mrow><mrow><mo>∞</mo></mrow></msup><mo>(</mo><mn>0</mn><mo>,</mo><mi>T</mi><mo>;</mo><msup><mrow><mi>L</mi></mrow><mrow><mover><mrow><mi>q</mi></mrow><mrow><mo>→</mo></mrow></mover></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo><mo>)</mo></math></span> with <span><math><munderover><mo>∑</mo><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>n</mi></mrow></munderover><mfrac><mrow><mn>1</mn></mrow><mrow><msub><mrow><mi>q</mi></mrow><mrow><mi>i</mi></mrow></msub></mrow></mfrac><mo>=</mo><mn>1</mn></math></span> ensure that Leray-Hopf weak solutions are regular. A new ingredient is <em>ε</em>-regularity criterion derived by the De Giorgi iteration technique under this critical regularity in high spatial dimension.</div></div>\",\"PeriodicalId\":15623,\"journal\":{\"name\":\"Journal of Differential Equations\",\"volume\":\"438 \",\"pages\":\"Article 113351\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S002203962500378X\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002203962500378X","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
On the borderline regularity criterion in anisotropic Lebesgue spaces of the Navier-Stokes equations
In this paper, we are concerned with the critical mixed norm regularity of Leray-Hopf weak solutions of the Navier-Stokes equations in three dimensions and higher dimensions. It is shown that with ensure that Leray-Hopf weak solutions are regular. A new ingredient is ε-regularity criterion derived by the De Giorgi iteration technique under this critical regularity in high spatial dimension.
期刊介绍:
The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools.
Research Areas Include:
• Mathematical control theory
• Ordinary differential equations
• Partial differential equations
• Stochastic differential equations
• Topological dynamics
• Related topics