Navier-Stokes方程各向异性Lebesgue空间的边规则判据

IF 2.3 2区 数学 Q1 MATHEMATICS
Yanqing Wang , Wei Wei , Gang Wu , Daoguo Zhou
{"title":"Navier-Stokes方程各向异性Lebesgue空间的边规则判据","authors":"Yanqing Wang ,&nbsp;Wei Wei ,&nbsp;Gang Wu ,&nbsp;Daoguo Zhou","doi":"10.1016/j.jde.2025.113351","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we are concerned with the critical mixed norm regularity of Leray-Hopf weak solutions of the Navier-Stokes equations in three dimensions and higher dimensions. It is shown that <span><math><mi>u</mi><mo>∈</mo><msup><mrow><mi>L</mi></mrow><mrow><mo>∞</mo></mrow></msup><mo>(</mo><mn>0</mn><mo>,</mo><mi>T</mi><mo>;</mo><msup><mrow><mi>L</mi></mrow><mrow><mover><mrow><mi>q</mi></mrow><mrow><mo>→</mo></mrow></mover></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo><mo>)</mo></math></span> with <span><math><munderover><mo>∑</mo><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>n</mi></mrow></munderover><mfrac><mrow><mn>1</mn></mrow><mrow><msub><mrow><mi>q</mi></mrow><mrow><mi>i</mi></mrow></msub></mrow></mfrac><mo>=</mo><mn>1</mn></math></span> ensure that Leray-Hopf weak solutions are regular. A new ingredient is <em>ε</em>-regularity criterion derived by the De Giorgi iteration technique under this critical regularity in high spatial dimension.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"438 ","pages":"Article 113351"},"PeriodicalIF":2.3000,"publicationDate":"2025-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the borderline regularity criterion in anisotropic Lebesgue spaces of the Navier-Stokes equations\",\"authors\":\"Yanqing Wang ,&nbsp;Wei Wei ,&nbsp;Gang Wu ,&nbsp;Daoguo Zhou\",\"doi\":\"10.1016/j.jde.2025.113351\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we are concerned with the critical mixed norm regularity of Leray-Hopf weak solutions of the Navier-Stokes equations in three dimensions and higher dimensions. It is shown that <span><math><mi>u</mi><mo>∈</mo><msup><mrow><mi>L</mi></mrow><mrow><mo>∞</mo></mrow></msup><mo>(</mo><mn>0</mn><mo>,</mo><mi>T</mi><mo>;</mo><msup><mrow><mi>L</mi></mrow><mrow><mover><mrow><mi>q</mi></mrow><mrow><mo>→</mo></mrow></mover></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo><mo>)</mo></math></span> with <span><math><munderover><mo>∑</mo><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>n</mi></mrow></munderover><mfrac><mrow><mn>1</mn></mrow><mrow><msub><mrow><mi>q</mi></mrow><mrow><mi>i</mi></mrow></msub></mrow></mfrac><mo>=</mo><mn>1</mn></math></span> ensure that Leray-Hopf weak solutions are regular. A new ingredient is <em>ε</em>-regularity criterion derived by the De Giorgi iteration technique under this critical regularity in high spatial dimension.</div></div>\",\"PeriodicalId\":15623,\"journal\":{\"name\":\"Journal of Differential Equations\",\"volume\":\"438 \",\"pages\":\"Article 113351\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S002203962500378X\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002203962500378X","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了三维和高维Navier-Stokes方程的Leray-Hopf弱解的临界混合范数正则性。结果表明,当∑i=1n1qi=1时,u∈L∞(0,T;Lq→(Rn))确保Leray-Hopf弱解是正则解。在这种高空间维的临界规则下,利用De Giorgi迭代技术导出了ε-规则判据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the borderline regularity criterion in anisotropic Lebesgue spaces of the Navier-Stokes equations
In this paper, we are concerned with the critical mixed norm regularity of Leray-Hopf weak solutions of the Navier-Stokes equations in three dimensions and higher dimensions. It is shown that uL(0,T;Lq(Rn)) with i=1n1qi=1 ensure that Leray-Hopf weak solutions are regular. A new ingredient is ε-regularity criterion derived by the De Giorgi iteration technique under this critical regularity in high spatial dimension.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.40
自引率
8.30%
发文量
543
审稿时长
9 months
期刊介绍: The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools. Research Areas Include: • Mathematical control theory • Ordinary differential equations • Partial differential equations • Stochastic differential equations • Topological dynamics • Related topics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信