Tian-Zhen Liu , Xiao-Hui Chi , Bing-Yu Wei , Jun-Ying Miao , Bao-Xiang Zhao , Zhao-Min Lin
{"title":"一种新型的基于fret的荧光探针,能够同时成像HeLa细胞中的脂滴和内质网两种不同的荧光信号","authors":"Tian-Zhen Liu , Xiao-Hui Chi , Bing-Yu Wei , Jun-Ying Miao , Bao-Xiang Zhao , Zhao-Min Lin","doi":"10.1016/j.saa.2025.126262","DOIUrl":null,"url":null,"abstract":"<div><div>Inter-organellar interactions play indispensable roles in regulating cellular homeostasis, necessitating advanced methodologies for their simultaneous and discriminative visualization. Fluorescent probes, prized for their sensitivity and spatiotemporal resolution, are pivotal tools for elucidating organelle dynamics in live-cell studies. However, current technologies remain limited in achieving robust dual-color imaging of multiple organelles with minimal crosstalk. To address this gap, we developed a Förster resonance energy transfer (FRET)-based ratiometric probe leveraging the pH-responsive spiro-pyran motif, which undergoes reversible ring-opening/closing transitions. This probe enables concurrent dual-color visualization of lipid droplets (LDs) and the endoplasmic reticulum (ER) in HeLa cells under single-excitation conditions, achieving high Pearson’s correlation coefficients and minimal spectral overlap. Our work advances the design of multifunctional probes for decoding inter-organelle communication in live systems.</div></div>","PeriodicalId":433,"journal":{"name":"Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy","volume":"339 ","pages":"Article 126262"},"PeriodicalIF":4.3000,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel FRET-based fluorescent probe capable of simultaneously imaging lipid droplets and the endoplasmic reticulum with two distinct fluorescence signals in HeLa cells\",\"authors\":\"Tian-Zhen Liu , Xiao-Hui Chi , Bing-Yu Wei , Jun-Ying Miao , Bao-Xiang Zhao , Zhao-Min Lin\",\"doi\":\"10.1016/j.saa.2025.126262\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Inter-organellar interactions play indispensable roles in regulating cellular homeostasis, necessitating advanced methodologies for their simultaneous and discriminative visualization. Fluorescent probes, prized for their sensitivity and spatiotemporal resolution, are pivotal tools for elucidating organelle dynamics in live-cell studies. However, current technologies remain limited in achieving robust dual-color imaging of multiple organelles with minimal crosstalk. To address this gap, we developed a Förster resonance energy transfer (FRET)-based ratiometric probe leveraging the pH-responsive spiro-pyran motif, which undergoes reversible ring-opening/closing transitions. This probe enables concurrent dual-color visualization of lipid droplets (LDs) and the endoplasmic reticulum (ER) in HeLa cells under single-excitation conditions, achieving high Pearson’s correlation coefficients and minimal spectral overlap. Our work advances the design of multifunctional probes for decoding inter-organelle communication in live systems.</div></div>\",\"PeriodicalId\":433,\"journal\":{\"name\":\"Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy\",\"volume\":\"339 \",\"pages\":\"Article 126262\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1386142525005682\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"SPECTROSCOPY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1386142525005682","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SPECTROSCOPY","Score":null,"Total":0}
A novel FRET-based fluorescent probe capable of simultaneously imaging lipid droplets and the endoplasmic reticulum with two distinct fluorescence signals in HeLa cells
Inter-organellar interactions play indispensable roles in regulating cellular homeostasis, necessitating advanced methodologies for their simultaneous and discriminative visualization. Fluorescent probes, prized for their sensitivity and spatiotemporal resolution, are pivotal tools for elucidating organelle dynamics in live-cell studies. However, current technologies remain limited in achieving robust dual-color imaging of multiple organelles with minimal crosstalk. To address this gap, we developed a Förster resonance energy transfer (FRET)-based ratiometric probe leveraging the pH-responsive spiro-pyran motif, which undergoes reversible ring-opening/closing transitions. This probe enables concurrent dual-color visualization of lipid droplets (LDs) and the endoplasmic reticulum (ER) in HeLa cells under single-excitation conditions, achieving high Pearson’s correlation coefficients and minimal spectral overlap. Our work advances the design of multifunctional probes for decoding inter-organelle communication in live systems.
期刊介绍:
Spectrochimica Acta, Part A: Molecular and Biomolecular Spectroscopy (SAA) is an interdisciplinary journal which spans from basic to applied aspects of optical spectroscopy in chemistry, medicine, biology, and materials science.
The journal publishes original scientific papers that feature high-quality spectroscopic data and analysis. From the broad range of optical spectroscopies, the emphasis is on electronic, vibrational or rotational spectra of molecules, rather than on spectroscopy based on magnetic moments.
Criteria for publication in SAA are novelty, uniqueness, and outstanding quality. Routine applications of spectroscopic techniques and computational methods are not appropriate.
Topics of particular interest of Spectrochimica Acta Part A include, but are not limited to:
Spectroscopy and dynamics of bioanalytical, biomedical, environmental, and atmospheric sciences,
Novel experimental techniques or instrumentation for molecular spectroscopy,
Novel theoretical and computational methods,
Novel applications in photochemistry and photobiology,
Novel interpretational approaches as well as advances in data analysis based on electronic or vibrational spectroscopy.