用于高效电化学脱盐的双功能氧化还原活性聚合物电极设计

IF 8.3 1区 工程技术 Q1 ENGINEERING, CHEMICAL
Peipei Zhang , Haibing Zhang , Sufen Cui , Zhimin Jiang , Jun Yang , Minjie Shi
{"title":"用于高效电化学脱盐的双功能氧化还原活性聚合物电极设计","authors":"Peipei Zhang ,&nbsp;Haibing Zhang ,&nbsp;Sufen Cui ,&nbsp;Zhimin Jiang ,&nbsp;Jun Yang ,&nbsp;Minjie Shi","doi":"10.1016/j.desal.2025.118948","DOIUrl":null,"url":null,"abstract":"<div><div>The emergence of hybrid capacitive deionization (HCDI), utilizing faradaic electrodes with pseudocapacitive properties, offers a promising electrochemical solution for water desalination and purification. Despite the increasing interest in organic materials for faradaic electrodes, their widespread use in HCDI devices is still hindered by obstacles about insufficient redox-active sites and low stability in aqueous environments. To address these challenges, we introduce a novel dual-functional redox-active polymer, named PZPS, which features a rigid conjugated backbone with dual-redox centers (C<img>N and S<img>O bonds). This unique molecular design, along with extensive π-electron delocalization across the strong polymeric structure, significantly improves pseudocapacitive Na<sup>+</sup> coordination and ensures remarkable stability in aqueous solution. As an electrode, the PZPS polymer exhibits an impressive specific capacitance and excellent cyclability, maintaining 98.04 % of its initial capacitance after 10,000 cycles. Consequently, a high-performance HCDI device with the PZPS electrode demonstrates impressive electrochemical desalination capabilities. It achieves a substantial salt removal capacity of 58.82 mg g<sup>−1</sup> at 1.2 V, a rapid average removal rate of 1.96 mg g<sup>−1</sup> min<sup>−1</sup>, and remarkable regeneration stability (∼93.15 % after 50 cycles). These results highlight the electrochemical advantages of the PZPS-based HCDI device and underscore its significant potential for highly efficient desalination applications.</div></div>","PeriodicalId":299,"journal":{"name":"Desalination","volume":"611 ","pages":"Article 118948"},"PeriodicalIF":8.3000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Designing a dual-functional redox-active polymer electrode for high-efficiency electrochemical desalination\",\"authors\":\"Peipei Zhang ,&nbsp;Haibing Zhang ,&nbsp;Sufen Cui ,&nbsp;Zhimin Jiang ,&nbsp;Jun Yang ,&nbsp;Minjie Shi\",\"doi\":\"10.1016/j.desal.2025.118948\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The emergence of hybrid capacitive deionization (HCDI), utilizing faradaic electrodes with pseudocapacitive properties, offers a promising electrochemical solution for water desalination and purification. Despite the increasing interest in organic materials for faradaic electrodes, their widespread use in HCDI devices is still hindered by obstacles about insufficient redox-active sites and low stability in aqueous environments. To address these challenges, we introduce a novel dual-functional redox-active polymer, named PZPS, which features a rigid conjugated backbone with dual-redox centers (C<img>N and S<img>O bonds). This unique molecular design, along with extensive π-electron delocalization across the strong polymeric structure, significantly improves pseudocapacitive Na<sup>+</sup> coordination and ensures remarkable stability in aqueous solution. As an electrode, the PZPS polymer exhibits an impressive specific capacitance and excellent cyclability, maintaining 98.04 % of its initial capacitance after 10,000 cycles. Consequently, a high-performance HCDI device with the PZPS electrode demonstrates impressive electrochemical desalination capabilities. It achieves a substantial salt removal capacity of 58.82 mg g<sup>−1</sup> at 1.2 V, a rapid average removal rate of 1.96 mg g<sup>−1</sup> min<sup>−1</sup>, and remarkable regeneration stability (∼93.15 % after 50 cycles). These results highlight the electrochemical advantages of the PZPS-based HCDI device and underscore its significant potential for highly efficient desalination applications.</div></div>\",\"PeriodicalId\":299,\"journal\":{\"name\":\"Desalination\",\"volume\":\"611 \",\"pages\":\"Article 118948\"},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2025-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Desalination\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0011916425004230\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Desalination","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0011916425004230","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

混合电容去离子(HCDI)的出现,利用法拉第电极具有假电容特性,为水的淡化和净化提供了一种很有前途的电化学解决方案。尽管人们对法拉第电极的有机材料越来越感兴趣,但它们在HCDI器件中的广泛应用仍然受到氧化还原活性位点不足和水环境稳定性低的障碍的阻碍。为了解决这些挑战,我们推出了一种新型的双功能氧化还原活性聚合物,名为PZPS,它具有刚性共轭骨架,具有双氧化还原中心(CN和SO键)。这种独特的分子设计,以及在强聚合物结构上广泛的π电子离域,显著提高了假电容性Na+配位,并确保了水溶液中的卓越稳定性。作为电极,PZPS聚合物表现出令人印象深刻的比电容和优异的可循环性,在10,000次循环后保持其初始电容的98.04%。因此,具有PZPS电极的高性能HCDI设备展示了令人印象深刻的电化学脱盐能力。在1.2 V下,它的脱盐能力为58.82 mg g−1,平均脱盐速率为1.96 mg g−1 min−1,并且在50次循环后具有显著的再生稳定性(~ 93.15%)。这些结果突出了基于pzps的HCDI装置的电化学优势,并强调了其在高效海水淡化应用中的巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Designing a dual-functional redox-active polymer electrode for high-efficiency electrochemical desalination

Designing a dual-functional redox-active polymer electrode for high-efficiency electrochemical desalination
The emergence of hybrid capacitive deionization (HCDI), utilizing faradaic electrodes with pseudocapacitive properties, offers a promising electrochemical solution for water desalination and purification. Despite the increasing interest in organic materials for faradaic electrodes, their widespread use in HCDI devices is still hindered by obstacles about insufficient redox-active sites and low stability in aqueous environments. To address these challenges, we introduce a novel dual-functional redox-active polymer, named PZPS, which features a rigid conjugated backbone with dual-redox centers (CN and SO bonds). This unique molecular design, along with extensive π-electron delocalization across the strong polymeric structure, significantly improves pseudocapacitive Na+ coordination and ensures remarkable stability in aqueous solution. As an electrode, the PZPS polymer exhibits an impressive specific capacitance and excellent cyclability, maintaining 98.04 % of its initial capacitance after 10,000 cycles. Consequently, a high-performance HCDI device with the PZPS electrode demonstrates impressive electrochemical desalination capabilities. It achieves a substantial salt removal capacity of 58.82 mg g−1 at 1.2 V, a rapid average removal rate of 1.96 mg g−1 min−1, and remarkable regeneration stability (∼93.15 % after 50 cycles). These results highlight the electrochemical advantages of the PZPS-based HCDI device and underscore its significant potential for highly efficient desalination applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Desalination
Desalination 工程技术-工程:化工
CiteScore
14.60
自引率
20.20%
发文量
619
审稿时长
41 days
期刊介绍: Desalination is a scholarly journal that focuses on the field of desalination materials, processes, and associated technologies. It encompasses a wide range of disciplines and aims to publish exceptional papers in this area. The journal invites submissions that explicitly revolve around water desalting and its applications to various sources such as seawater, groundwater, and wastewater. It particularly encourages research on diverse desalination methods including thermal, membrane, sorption, and hybrid processes. By providing a platform for innovative studies, Desalination aims to advance the understanding and development of desalination technologies, promoting sustainable solutions for water scarcity challenges.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信