Roberto Garrappa , Stefan Gerhold , Marina Popolizio , Thomas Simon
{"title":"复平面上双参数Mittag-Leffler函数的若干不等式","authors":"Roberto Garrappa , Stefan Gerhold , Marina Popolizio , Thomas Simon","doi":"10.1016/j.jmaa.2025.129588","DOIUrl":null,"url":null,"abstract":"<div><div>For the two-parameter Mittag-Leffler function <span><math><msub><mrow><mi>E</mi></mrow><mrow><mi>α</mi><mo>,</mo><mi>β</mi></mrow></msub></math></span> with <span><math><mi>α</mi><mo>></mo><mn>0</mn></math></span> and <span><math><mi>β</mi><mo>≥</mo><mn>0</mn></math></span>, we consider the question whether <span><math><mo>|</mo><msub><mrow><mi>E</mi></mrow><mrow><mi>α</mi><mo>,</mo><mi>β</mi></mrow></msub><mo>(</mo><mi>z</mi><mo>)</mo><mo>|</mo></math></span> and <span><math><msub><mrow><mi>E</mi></mrow><mrow><mi>α</mi><mo>,</mo><mi>β</mi></mrow></msub><mo>(</mo><mo>ℜ</mo><mi>z</mi><mo>)</mo></math></span> are comparable on the whole complex plane. We show that the inequality <span><math><mo>|</mo><msub><mrow><mi>E</mi></mrow><mrow><mi>α</mi><mo>,</mo><mi>β</mi></mrow></msub><mo>(</mo><mi>z</mi><mo>)</mo><mo>|</mo><mo>≤</mo><msub><mrow><mi>E</mi></mrow><mrow><mi>α</mi><mo>,</mo><mi>β</mi></mrow></msub><mo>(</mo><mo>ℜ</mo><mi>z</mi><mo>)</mo></math></span> holds globally if and only if <span><math><msub><mrow><mi>E</mi></mrow><mrow><mi>α</mi><mo>,</mo><mi>β</mi></mrow></msub><mo>(</mo><mo>−</mo><mi>x</mi><mo>)</mo></math></span> is completely monotone on <span><math><mo>(</mo><mn>0</mn><mo>,</mo><mo>∞</mo><mo>)</mo></math></span>. For <span><math><mi>α</mi><mo>∈</mo><mo>[</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>)</mo></math></span> we prove that the complete monotonicity of <span><math><mn>1</mn><mo>/</mo><msub><mrow><mi>E</mi></mrow><mrow><mi>α</mi><mo>,</mo><mi>β</mi></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo></math></span> on <span><math><mo>(</mo><mn>0</mn><mo>,</mo><mo>∞</mo><mo>)</mo></math></span> is necessary for the global inequality <span><math><mo>|</mo><msub><mrow><mi>E</mi></mrow><mrow><mi>α</mi><mo>,</mo><mi>β</mi></mrow></msub><mo>(</mo><mi>z</mi><mo>)</mo><mo>|</mo><mo>≥</mo><msub><mrow><mi>E</mi></mrow><mrow><mi>α</mi><mo>,</mo><mi>β</mi></mrow></msub><mo>(</mo><mo>ℜ</mo><mi>z</mi><mo>)</mo></math></span>, and also sufficient for <span><math><mi>α</mi><mo>=</mo><mn>1</mn></math></span>. For <span><math><mi>α</mi><mo>≥</mo><mn>2</mn></math></span> we show that the absence of non-real zeros for <span><math><msub><mrow><mi>E</mi></mrow><mrow><mi>α</mi><mo>,</mo><mi>β</mi></mrow></msub></math></span> is sufficient for the global inequality <span><math><mo>|</mo><msub><mrow><mi>E</mi></mrow><mrow><mi>α</mi><mo>,</mo><mi>β</mi></mrow></msub><mo>(</mo><mi>z</mi><mo>)</mo><mo>|</mo><mo>≥</mo><msub><mrow><mi>E</mi></mrow><mrow><mi>α</mi><mo>,</mo><mi>β</mi></mrow></msub><mo>(</mo><mo>ℜ</mo><mi>z</mi><mo>)</mo></math></span>, and also necessary for <span><math><mi>α</mi><mo>=</mo><mn>2</mn></math></span>. All these results have an explicit description in terms of the values of the parameters <span><math><mi>α</mi><mo>,</mo><mi>β</mi></math></span>. Along the way, several inequalities for <span><math><msub><mrow><mi>E</mi></mrow><mrow><mi>α</mi><mo>,</mo><mi>β</mi></mrow></msub></math></span> on the half-plane <span><math><mo>{</mo><mo>ℜ</mo><mi>z</mi><mo>≥</mo><mn>0</mn><mo>}</mo></math></span> are established, and a characterization of its log-convexity and log-concavity on the positive half-line is obtained.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"551 1","pages":"Article 129588"},"PeriodicalIF":1.2000,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On some inequalities for the two-parameter Mittag-Leffler function in the complex plane\",\"authors\":\"Roberto Garrappa , Stefan Gerhold , Marina Popolizio , Thomas Simon\",\"doi\":\"10.1016/j.jmaa.2025.129588\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>For the two-parameter Mittag-Leffler function <span><math><msub><mrow><mi>E</mi></mrow><mrow><mi>α</mi><mo>,</mo><mi>β</mi></mrow></msub></math></span> with <span><math><mi>α</mi><mo>></mo><mn>0</mn></math></span> and <span><math><mi>β</mi><mo>≥</mo><mn>0</mn></math></span>, we consider the question whether <span><math><mo>|</mo><msub><mrow><mi>E</mi></mrow><mrow><mi>α</mi><mo>,</mo><mi>β</mi></mrow></msub><mo>(</mo><mi>z</mi><mo>)</mo><mo>|</mo></math></span> and <span><math><msub><mrow><mi>E</mi></mrow><mrow><mi>α</mi><mo>,</mo><mi>β</mi></mrow></msub><mo>(</mo><mo>ℜ</mo><mi>z</mi><mo>)</mo></math></span> are comparable on the whole complex plane. We show that the inequality <span><math><mo>|</mo><msub><mrow><mi>E</mi></mrow><mrow><mi>α</mi><mo>,</mo><mi>β</mi></mrow></msub><mo>(</mo><mi>z</mi><mo>)</mo><mo>|</mo><mo>≤</mo><msub><mrow><mi>E</mi></mrow><mrow><mi>α</mi><mo>,</mo><mi>β</mi></mrow></msub><mo>(</mo><mo>ℜ</mo><mi>z</mi><mo>)</mo></math></span> holds globally if and only if <span><math><msub><mrow><mi>E</mi></mrow><mrow><mi>α</mi><mo>,</mo><mi>β</mi></mrow></msub><mo>(</mo><mo>−</mo><mi>x</mi><mo>)</mo></math></span> is completely monotone on <span><math><mo>(</mo><mn>0</mn><mo>,</mo><mo>∞</mo><mo>)</mo></math></span>. For <span><math><mi>α</mi><mo>∈</mo><mo>[</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>)</mo></math></span> we prove that the complete monotonicity of <span><math><mn>1</mn><mo>/</mo><msub><mrow><mi>E</mi></mrow><mrow><mi>α</mi><mo>,</mo><mi>β</mi></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo></math></span> on <span><math><mo>(</mo><mn>0</mn><mo>,</mo><mo>∞</mo><mo>)</mo></math></span> is necessary for the global inequality <span><math><mo>|</mo><msub><mrow><mi>E</mi></mrow><mrow><mi>α</mi><mo>,</mo><mi>β</mi></mrow></msub><mo>(</mo><mi>z</mi><mo>)</mo><mo>|</mo><mo>≥</mo><msub><mrow><mi>E</mi></mrow><mrow><mi>α</mi><mo>,</mo><mi>β</mi></mrow></msub><mo>(</mo><mo>ℜ</mo><mi>z</mi><mo>)</mo></math></span>, and also sufficient for <span><math><mi>α</mi><mo>=</mo><mn>1</mn></math></span>. For <span><math><mi>α</mi><mo>≥</mo><mn>2</mn></math></span> we show that the absence of non-real zeros for <span><math><msub><mrow><mi>E</mi></mrow><mrow><mi>α</mi><mo>,</mo><mi>β</mi></mrow></msub></math></span> is sufficient for the global inequality <span><math><mo>|</mo><msub><mrow><mi>E</mi></mrow><mrow><mi>α</mi><mo>,</mo><mi>β</mi></mrow></msub><mo>(</mo><mi>z</mi><mo>)</mo><mo>|</mo><mo>≥</mo><msub><mrow><mi>E</mi></mrow><mrow><mi>α</mi><mo>,</mo><mi>β</mi></mrow></msub><mo>(</mo><mo>ℜ</mo><mi>z</mi><mo>)</mo></math></span>, and also necessary for <span><math><mi>α</mi><mo>=</mo><mn>2</mn></math></span>. All these results have an explicit description in terms of the values of the parameters <span><math><mi>α</mi><mo>,</mo><mi>β</mi></math></span>. Along the way, several inequalities for <span><math><msub><mrow><mi>E</mi></mrow><mrow><mi>α</mi><mo>,</mo><mi>β</mi></mrow></msub></math></span> on the half-plane <span><math><mo>{</mo><mo>ℜ</mo><mi>z</mi><mo>≥</mo><mn>0</mn><mo>}</mo></math></span> are established, and a characterization of its log-convexity and log-concavity on the positive half-line is obtained.</div></div>\",\"PeriodicalId\":50147,\"journal\":{\"name\":\"Journal of Mathematical Analysis and Applications\",\"volume\":\"551 1\",\"pages\":\"Article 129588\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Analysis and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022247X25003695\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X25003695","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
On some inequalities for the two-parameter Mittag-Leffler function in the complex plane
For the two-parameter Mittag-Leffler function with and , we consider the question whether and are comparable on the whole complex plane. We show that the inequality holds globally if and only if is completely monotone on . For we prove that the complete monotonicity of on is necessary for the global inequality , and also sufficient for . For we show that the absence of non-real zeros for is sufficient for the global inequality , and also necessary for . All these results have an explicit description in terms of the values of the parameters . Along the way, several inequalities for on the half-plane are established, and a characterization of its log-convexity and log-concavity on the positive half-line is obtained.
期刊介绍:
The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions.
Papers are sought which employ one or more of the following areas of classical analysis:
• Analytic number theory
• Functional analysis and operator theory
• Real and harmonic analysis
• Complex analysis
• Numerical analysis
• Applied mathematics
• Partial differential equations
• Dynamical systems
• Control and Optimization
• Probability
• Mathematical biology
• Combinatorics
• Mathematical physics.