一维等熵平面MHD方程剪切黏度极限消失的最优收敛速率

IF 1.2 3区 数学 Q1 MATHEMATICS
Cailong Gao, Xia Ye
{"title":"一维等熵平面MHD方程剪切黏度极限消失的最优收敛速率","authors":"Cailong Gao,&nbsp;Xia Ye","doi":"10.1016/j.jmaa.2025.129591","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we consider the initial-boundary value problem for the one-dimensional isentropic planar magnetohydrodynamics (MHD) equations. Using asymptotic expansions, we study the expression of the boundary layer and the rate of convergence of the vanishing shear viscosity limit, which optimizes the convergence rate <span><math><msup><mrow><mi>ε</mi></mrow><mrow><mn>1</mn><mo>/</mo><mn>4</mn></mrow></msup></math></span> of the results presented in reference Ye and Zhang <span><span>[35]</span></span> (2016) to <span><math><msup><mrow><mi>ε</mi></mrow><mrow><mn>1</mn><mo>/</mo><mn>2</mn></mrow></msup></math></span>.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"551 1","pages":"Article 129591"},"PeriodicalIF":1.2000,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal convergence rate of the vanishing shear viscosity limit for one-dimensional isentropic planar MHD equations\",\"authors\":\"Cailong Gao,&nbsp;Xia Ye\",\"doi\":\"10.1016/j.jmaa.2025.129591\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we consider the initial-boundary value problem for the one-dimensional isentropic planar magnetohydrodynamics (MHD) equations. Using asymptotic expansions, we study the expression of the boundary layer and the rate of convergence of the vanishing shear viscosity limit, which optimizes the convergence rate <span><math><msup><mrow><mi>ε</mi></mrow><mrow><mn>1</mn><mo>/</mo><mn>4</mn></mrow></msup></math></span> of the results presented in reference Ye and Zhang <span><span>[35]</span></span> (2016) to <span><math><msup><mrow><mi>ε</mi></mrow><mrow><mn>1</mn><mo>/</mo><mn>2</mn></mrow></msup></math></span>.</div></div>\",\"PeriodicalId\":50147,\"journal\":{\"name\":\"Journal of Mathematical Analysis and Applications\",\"volume\":\"551 1\",\"pages\":\"Article 129591\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Analysis and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022247X25003725\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X25003725","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究一维等熵平面磁流体动力学方程的初边值问题。我们利用渐近展开式研究了边界层和消失剪切黏度极限的收敛速度表达式,将Ye and Zhang[35](2016)的结果的收敛速度ε1/4优化到ε1/2。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal convergence rate of the vanishing shear viscosity limit for one-dimensional isentropic planar MHD equations
In this paper, we consider the initial-boundary value problem for the one-dimensional isentropic planar magnetohydrodynamics (MHD) equations. Using asymptotic expansions, we study the expression of the boundary layer and the rate of convergence of the vanishing shear viscosity limit, which optimizes the convergence rate ε1/4 of the results presented in reference Ye and Zhang [35] (2016) to ε1/2.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.50
自引率
7.70%
发文量
790
审稿时长
6 months
期刊介绍: The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions. Papers are sought which employ one or more of the following areas of classical analysis: • Analytic number theory • Functional analysis and operator theory • Real and harmonic analysis • Complex analysis • Numerical analysis • Applied mathematics • Partial differential equations • Dynamical systems • Control and Optimization • Probability • Mathematical biology • Combinatorics • Mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信