质子交换膜燃料电池“崩溃点”降解机理及预测方法研究进展

IF 8.3 2区 工程技术 Q1 CHEMISTRY, PHYSICAL
Tiankuo Chu , Jue Wang , Daozeng Yang , Xukai Hou , Daijun Yang , Bing Li , Pingwen Ming , Cunman Zhang
{"title":"质子交换膜燃料电池“崩溃点”降解机理及预测方法研究进展","authors":"Tiankuo Chu ,&nbsp;Jue Wang ,&nbsp;Daozeng Yang ,&nbsp;Xukai Hou ,&nbsp;Daijun Yang ,&nbsp;Bing Li ,&nbsp;Pingwen Ming ,&nbsp;Cunman Zhang","doi":"10.1016/j.ijhydene.2025.04.317","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates the \"collapse point\" of proton exchange membrane fuel cell (PEMFC) performance degradation through a 3000 h durability test under dynamic operating conditions. Quantitative analysis of polarization data identified mass transfer polarization deterioration as the primary cause, with high current density concentration impedance changes enabling early collapse point prediction. Results demonstrate that high current density (2000 mA cm<sup>−2</sup>) triggers an earlier collapse point (2200 h). Post-test characterization revealed GDL degradation, evidenced by increased Gurley values (anode: 32 to 52; cathode: 2 to 32) and reduced cathode carbon paper strength. Catalyst layer analysis showed mesopore and macropore collapse, while micropores increased due to ionomer migration and carbon corrosion. These structural changes, coupled with water management deterioration, accelerated MEA mass transfer efficiency decay, leading to irreversible performance loss. This work provides a novel approach for early collapse point prediction and mechanistic insights into PEMFC durability under dynamic conditions.</div></div>","PeriodicalId":337,"journal":{"name":"International Journal of Hydrogen Energy","volume":"131 ","pages":"Pages 1-11"},"PeriodicalIF":8.3000,"publicationDate":"2025-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Degradation mechanism and prediction method development of the \\\"collapse point\\\" in proton exchange membrane fuel cell\",\"authors\":\"Tiankuo Chu ,&nbsp;Jue Wang ,&nbsp;Daozeng Yang ,&nbsp;Xukai Hou ,&nbsp;Daijun Yang ,&nbsp;Bing Li ,&nbsp;Pingwen Ming ,&nbsp;Cunman Zhang\",\"doi\":\"10.1016/j.ijhydene.2025.04.317\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study investigates the \\\"collapse point\\\" of proton exchange membrane fuel cell (PEMFC) performance degradation through a 3000 h durability test under dynamic operating conditions. Quantitative analysis of polarization data identified mass transfer polarization deterioration as the primary cause, with high current density concentration impedance changes enabling early collapse point prediction. Results demonstrate that high current density (2000 mA cm<sup>−2</sup>) triggers an earlier collapse point (2200 h). Post-test characterization revealed GDL degradation, evidenced by increased Gurley values (anode: 32 to 52; cathode: 2 to 32) and reduced cathode carbon paper strength. Catalyst layer analysis showed mesopore and macropore collapse, while micropores increased due to ionomer migration and carbon corrosion. These structural changes, coupled with water management deterioration, accelerated MEA mass transfer efficiency decay, leading to irreversible performance loss. This work provides a novel approach for early collapse point prediction and mechanistic insights into PEMFC durability under dynamic conditions.</div></div>\",\"PeriodicalId\":337,\"journal\":{\"name\":\"International Journal of Hydrogen Energy\",\"volume\":\"131 \",\"pages\":\"Pages 1-11\"},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2025-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Hydrogen Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0360319925020051\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Hydrogen Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0360319925020051","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

本研究通过动态运行条件下3000 h耐久性试验,探讨质子交换膜燃料电池(PEMFC)性能退化的“崩溃点”。极化数据的定量分析表明,传质极化恶化是主要原因,高电流密度浓度阻抗变化可以早期预测崩溃点。结果表明,高电流密度(2000 mA cm−2)触发了更早的崩溃点(2200 h)。测试后的表征表明,GDL降解,证明了Gurley值的增加(阳极:32至52;阴极:2 ~ 32),降低阴极复写纸强度。催化剂层分析显示中孔和大孔塌陷,微孔因离聚体迁移和碳腐蚀而增多。这些结构变化,加上水资源管理的恶化,加速了MEA传质效率的下降,导致不可逆转的性能损失。这项工作为动态条件下PEMFC耐久性的早期崩溃点预测和机理洞察提供了新的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Degradation mechanism and prediction method development of the "collapse point" in proton exchange membrane fuel cell

Degradation mechanism and prediction method development of the "collapse point" in proton exchange membrane fuel cell
This study investigates the "collapse point" of proton exchange membrane fuel cell (PEMFC) performance degradation through a 3000 h durability test under dynamic operating conditions. Quantitative analysis of polarization data identified mass transfer polarization deterioration as the primary cause, with high current density concentration impedance changes enabling early collapse point prediction. Results demonstrate that high current density (2000 mA cm−2) triggers an earlier collapse point (2200 h). Post-test characterization revealed GDL degradation, evidenced by increased Gurley values (anode: 32 to 52; cathode: 2 to 32) and reduced cathode carbon paper strength. Catalyst layer analysis showed mesopore and macropore collapse, while micropores increased due to ionomer migration and carbon corrosion. These structural changes, coupled with water management deterioration, accelerated MEA mass transfer efficiency decay, leading to irreversible performance loss. This work provides a novel approach for early collapse point prediction and mechanistic insights into PEMFC durability under dynamic conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Hydrogen Energy
International Journal of Hydrogen Energy 工程技术-环境科学
CiteScore
13.50
自引率
25.00%
发文量
3502
审稿时长
60 days
期刊介绍: The objective of the International Journal of Hydrogen Energy is to facilitate the exchange of new ideas, technological advancements, and research findings in the field of Hydrogen Energy among scientists and engineers worldwide. This journal showcases original research, both analytical and experimental, covering various aspects of Hydrogen Energy. These include production, storage, transmission, utilization, enabling technologies, environmental impact, economic considerations, and global perspectives on hydrogen and its carriers such as NH3, CH4, alcohols, etc. The utilization aspect encompasses various methods such as thermochemical (combustion), photochemical, electrochemical (fuel cells), and nuclear conversion of hydrogen, hydrogen isotopes, and hydrogen carriers into thermal, mechanical, and electrical energies. The applications of these energies can be found in transportation (including aerospace), industrial, commercial, and residential sectors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信