边相加和Kemeny常数的变化

IF 1 3区 数学 Q3 MATHEMATICS, APPLIED
Stephen Kirkland , Yuqiao Li , John S. McAlister , Xiaohong Zhang
{"title":"边相加和Kemeny常数的变化","authors":"Stephen Kirkland ,&nbsp;Yuqiao Li ,&nbsp;John S. McAlister ,&nbsp;Xiaohong Zhang","doi":"10.1016/j.dam.2025.04.031","DOIUrl":null,"url":null,"abstract":"<div><div>Given a connected graph <span><math><mi>G</mi></math></span>, Kemeny’s constant <span><math><mrow><mi>K</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> measures the average travel time for a random walk to reach a randomly selected vertex. It is known that when an edge is added to <span><math><mi>G</mi></math></span>, the value of Kemeny’s constant may either decrease, increase, or stay the same. In this paper, we present a quantitative analysis of this behaviour when the initial graph is a tree with <span><math><mi>n</mi></math></span> vertices. We prove that when an edge is added into a tree on <span><math><mi>n</mi></math></span> vertices, the maximum possible increase in Kemeny’s constant is roughly <span><math><mrow><mfrac><mrow><mn>2</mn></mrow><mrow><mn>3</mn></mrow></mfrac><mi>n</mi><mo>,</mo></mrow></math></span> while the maximum possible decrease is roughly <span><math><mrow><mfrac><mrow><mn>3</mn></mrow><mrow><mn>16</mn></mrow></mfrac><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></math></span>. We also identify the trees, and the edges to be added, that correspond to the maximum increase and maximum decrease. Throughout, both matrix theoretic and graph theoretic techniques are employed.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"373 ","pages":"Pages 77-90"},"PeriodicalIF":1.0000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Edge addition and the change in Kemeny’s constant\",\"authors\":\"Stephen Kirkland ,&nbsp;Yuqiao Li ,&nbsp;John S. McAlister ,&nbsp;Xiaohong Zhang\",\"doi\":\"10.1016/j.dam.2025.04.031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Given a connected graph <span><math><mi>G</mi></math></span>, Kemeny’s constant <span><math><mrow><mi>K</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> measures the average travel time for a random walk to reach a randomly selected vertex. It is known that when an edge is added to <span><math><mi>G</mi></math></span>, the value of Kemeny’s constant may either decrease, increase, or stay the same. In this paper, we present a quantitative analysis of this behaviour when the initial graph is a tree with <span><math><mi>n</mi></math></span> vertices. We prove that when an edge is added into a tree on <span><math><mi>n</mi></math></span> vertices, the maximum possible increase in Kemeny’s constant is roughly <span><math><mrow><mfrac><mrow><mn>2</mn></mrow><mrow><mn>3</mn></mrow></mfrac><mi>n</mi><mo>,</mo></mrow></math></span> while the maximum possible decrease is roughly <span><math><mrow><mfrac><mrow><mn>3</mn></mrow><mrow><mn>16</mn></mrow></mfrac><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></math></span>. We also identify the trees, and the edges to be added, that correspond to the maximum increase and maximum decrease. Throughout, both matrix theoretic and graph theoretic techniques are employed.</div></div>\",\"PeriodicalId\":50573,\"journal\":{\"name\":\"Discrete Applied Mathematics\",\"volume\":\"373 \",\"pages\":\"Pages 77-90\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0166218X25002008\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166218X25002008","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

给定一个连通图G, Kemeny常数K(G)测量随机行走到达随机选择顶点的平均旅行时间。众所周知,当G中加入一条边时,Kemeny常数的值可能会减小、增大或保持不变。在本文中,我们给出了当初始图是一个有n个顶点的树时这种行为的定量分析。我们证明了当一条边被添加到有n个顶点的树中时,Kemeny常数的最大可能增加大约是23n,而最大可能减少大约是316n2。我们还确定树和要添加的边,对应于最大增加和最大减少。在整个过程中,同时使用了矩阵理论和图论技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Edge addition and the change in Kemeny’s constant
Given a connected graph G, Kemeny’s constant K(G) measures the average travel time for a random walk to reach a randomly selected vertex. It is known that when an edge is added to G, the value of Kemeny’s constant may either decrease, increase, or stay the same. In this paper, we present a quantitative analysis of this behaviour when the initial graph is a tree with n vertices. We prove that when an edge is added into a tree on n vertices, the maximum possible increase in Kemeny’s constant is roughly 23n, while the maximum possible decrease is roughly 316n2. We also identify the trees, and the edges to be added, that correspond to the maximum increase and maximum decrease. Throughout, both matrix theoretic and graph theoretic techniques are employed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Discrete Applied Mathematics
Discrete Applied Mathematics 数学-应用数学
CiteScore
2.30
自引率
9.10%
发文量
422
审稿时长
4.5 months
期刊介绍: The aim of Discrete Applied Mathematics is to bring together research papers in different areas of algorithmic and applicable discrete mathematics as well as applications of combinatorial mathematics to informatics and various areas of science and technology. Contributions presented to the journal can be research papers, short notes, surveys, and possibly research problems. The "Communications" section will be devoted to the fastest possible publication of recent research results that are checked and recommended for publication by a member of the Editorial Board. The journal will also publish a limited number of book announcements as well as proceedings of conferences. These proceedings will be fully refereed and adhere to the normal standards of the journal. Potential authors are advised to view the journal and the open calls-for-papers of special issues before submitting their manuscripts. Only high-quality, original work that is within the scope of the journal or the targeted special issue will be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信