{"title":"d波超导体时域奇摄动双波问题fem的准均匀无条件超收敛误差估计","authors":"Yanmi Wu , Dongyang Shi","doi":"10.1016/j.camwa.2025.04.018","DOIUrl":null,"url":null,"abstract":"<div><div>For the fourth order time-dependent singularly perturbed Bi-wave equation modeling <em>d</em>-wave superconductors, the implicit Backward Euler (BE) and Crank-Nicolson (CN) schemes of Galerkin finite element method (FEM) are studied by Bonner-Fox-Shmite element. Then the quasi-uniform and unconditional superconvergent error estimates of orders <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>h</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>+</mo><mi>τ</mi><mo>)</mo></math></span> and <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>h</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>+</mo><msup><mrow><mi>τ</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></math></span> (<em>h</em>, the spatial parameter, and <em>τ</em>, the time step) in the energy norm are derived respectively for the above schemes, which are independent of the negative powers of the perturbation parameter appearing in the model. Finally, some numerical results are provided to verify the theoretical analysis.</div></div>","PeriodicalId":55218,"journal":{"name":"Computers & Mathematics with Applications","volume":"191 ","pages":"Pages 24-35"},"PeriodicalIF":2.9000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quasi-uniform unconditional superconvergent error estimates of FEMs for the time-dependent singularly perturbed Bi-wave problem modeling d-wave superconductors\",\"authors\":\"Yanmi Wu , Dongyang Shi\",\"doi\":\"10.1016/j.camwa.2025.04.018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>For the fourth order time-dependent singularly perturbed Bi-wave equation modeling <em>d</em>-wave superconductors, the implicit Backward Euler (BE) and Crank-Nicolson (CN) schemes of Galerkin finite element method (FEM) are studied by Bonner-Fox-Shmite element. Then the quasi-uniform and unconditional superconvergent error estimates of orders <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>h</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>+</mo><mi>τ</mi><mo>)</mo></math></span> and <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>h</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>+</mo><msup><mrow><mi>τ</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></math></span> (<em>h</em>, the spatial parameter, and <em>τ</em>, the time step) in the energy norm are derived respectively for the above schemes, which are independent of the negative powers of the perturbation parameter appearing in the model. Finally, some numerical results are provided to verify the theoretical analysis.</div></div>\",\"PeriodicalId\":55218,\"journal\":{\"name\":\"Computers & Mathematics with Applications\",\"volume\":\"191 \",\"pages\":\"Pages 24-35\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Mathematics with Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0898122125001646\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Mathematics with Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0898122125001646","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Quasi-uniform unconditional superconvergent error estimates of FEMs for the time-dependent singularly perturbed Bi-wave problem modeling d-wave superconductors
For the fourth order time-dependent singularly perturbed Bi-wave equation modeling d-wave superconductors, the implicit Backward Euler (BE) and Crank-Nicolson (CN) schemes of Galerkin finite element method (FEM) are studied by Bonner-Fox-Shmite element. Then the quasi-uniform and unconditional superconvergent error estimates of orders and (h, the spatial parameter, and τ, the time step) in the energy norm are derived respectively for the above schemes, which are independent of the negative powers of the perturbation parameter appearing in the model. Finally, some numerical results are provided to verify the theoretical analysis.
期刊介绍:
Computers & Mathematics with Applications provides a medium of exchange for those engaged in fields contributing to building successful simulations for science and engineering using Partial Differential Equations (PDEs).