{"title":"混合动力有机朗肯蒸汽压缩冷却系统的实验验证","authors":"Bennett Platt, Derek Young, Todd Bandhauer","doi":"10.1016/j.apenergy.2025.125956","DOIUrl":null,"url":null,"abstract":"<div><div>Thermally activated chillers, such as absorption chillers and Organic Rankine Vapor Compression (ORVC) systems, offer promising solutions for improving efficiency and reducing emissions in heating, ventilation, and air conditioning (HVAC) applications. However, their adoption in the U.S. has been limited due to performance challenges with variable heat input. Integrating electric input into ORVC systems has been proposed as a solution to variable heat input performance degradation, but the concept has not experimentally validated. This study presents results from a 263 kW<sub>th</sub> hybrid ORVC test facility operating in electric, thermal, and hybrid cooling modes under HVAC-relevant conditions. In hybrid cooling mode, compression in the vapor compression cycle was provided by an electric compressor and a thermally driven compressor. Three configurations were evaluated: parallel compressors, series compressors with the thermally driven compressor first, and series compressors with the electric compressor first. The optimal configuration (thermally driven compressor first in series) was tested with heat inputs ranging from fully thermal to fully electric operation. Testing was conducted with cooling duty at 175 kW, heat input at 91 °C, heat rejection at 30 °C, and cooling delivered at 9 °C. At low heat input (113 kW), the system achieved high thermal COP (1.02) and low electric COP (3.80), while at high heat input, the thermal COP was 0.54 and the electric COP was 8.76 at 331 kW. Performance surpassed purely thermal (COP<sub>th</sub> = 0.42) and purely electric (COPe = 4.55) modes with heat input above 180 kW. Turbomachinery analysis identified compressor limitations, suggesting optimized selection could further enhance efficiency. This study establishes hybrid ORVC performance for HVAC applications.</div></div>","PeriodicalId":246,"journal":{"name":"Applied Energy","volume":"392 ","pages":"Article 125956"},"PeriodicalIF":10.1000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental validation of a hybrid electric organic Rankine vapor compression cooling system\",\"authors\":\"Bennett Platt, Derek Young, Todd Bandhauer\",\"doi\":\"10.1016/j.apenergy.2025.125956\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Thermally activated chillers, such as absorption chillers and Organic Rankine Vapor Compression (ORVC) systems, offer promising solutions for improving efficiency and reducing emissions in heating, ventilation, and air conditioning (HVAC) applications. However, their adoption in the U.S. has been limited due to performance challenges with variable heat input. Integrating electric input into ORVC systems has been proposed as a solution to variable heat input performance degradation, but the concept has not experimentally validated. This study presents results from a 263 kW<sub>th</sub> hybrid ORVC test facility operating in electric, thermal, and hybrid cooling modes under HVAC-relevant conditions. In hybrid cooling mode, compression in the vapor compression cycle was provided by an electric compressor and a thermally driven compressor. Three configurations were evaluated: parallel compressors, series compressors with the thermally driven compressor first, and series compressors with the electric compressor first. The optimal configuration (thermally driven compressor first in series) was tested with heat inputs ranging from fully thermal to fully electric operation. Testing was conducted with cooling duty at 175 kW, heat input at 91 °C, heat rejection at 30 °C, and cooling delivered at 9 °C. At low heat input (113 kW), the system achieved high thermal COP (1.02) and low electric COP (3.80), while at high heat input, the thermal COP was 0.54 and the electric COP was 8.76 at 331 kW. Performance surpassed purely thermal (COP<sub>th</sub> = 0.42) and purely electric (COPe = 4.55) modes with heat input above 180 kW. Turbomachinery analysis identified compressor limitations, suggesting optimized selection could further enhance efficiency. This study establishes hybrid ORVC performance for HVAC applications.</div></div>\",\"PeriodicalId\":246,\"journal\":{\"name\":\"Applied Energy\",\"volume\":\"392 \",\"pages\":\"Article 125956\"},\"PeriodicalIF\":10.1000,\"publicationDate\":\"2025-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0306261925006865\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306261925006865","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Experimental validation of a hybrid electric organic Rankine vapor compression cooling system
Thermally activated chillers, such as absorption chillers and Organic Rankine Vapor Compression (ORVC) systems, offer promising solutions for improving efficiency and reducing emissions in heating, ventilation, and air conditioning (HVAC) applications. However, their adoption in the U.S. has been limited due to performance challenges with variable heat input. Integrating electric input into ORVC systems has been proposed as a solution to variable heat input performance degradation, but the concept has not experimentally validated. This study presents results from a 263 kWth hybrid ORVC test facility operating in electric, thermal, and hybrid cooling modes under HVAC-relevant conditions. In hybrid cooling mode, compression in the vapor compression cycle was provided by an electric compressor and a thermally driven compressor. Three configurations were evaluated: parallel compressors, series compressors with the thermally driven compressor first, and series compressors with the electric compressor first. The optimal configuration (thermally driven compressor first in series) was tested with heat inputs ranging from fully thermal to fully electric operation. Testing was conducted with cooling duty at 175 kW, heat input at 91 °C, heat rejection at 30 °C, and cooling delivered at 9 °C. At low heat input (113 kW), the system achieved high thermal COP (1.02) and low electric COP (3.80), while at high heat input, the thermal COP was 0.54 and the electric COP was 8.76 at 331 kW. Performance surpassed purely thermal (COPth = 0.42) and purely electric (COPe = 4.55) modes with heat input above 180 kW. Turbomachinery analysis identified compressor limitations, suggesting optimized selection could further enhance efficiency. This study establishes hybrid ORVC performance for HVAC applications.
期刊介绍:
Applied Energy serves as a platform for sharing innovations, research, development, and demonstrations in energy conversion, conservation, and sustainable energy systems. The journal covers topics such as optimal energy resource use, environmental pollutant mitigation, and energy process analysis. It welcomes original papers, review articles, technical notes, and letters to the editor. Authors are encouraged to submit manuscripts that bridge the gap between research, development, and implementation. The journal addresses a wide spectrum of topics, including fossil and renewable energy technologies, energy economics, and environmental impacts. Applied Energy also explores modeling and forecasting, conservation strategies, and the social and economic implications of energy policies, including climate change mitigation. It is complemented by the open-access journal Advances in Applied Energy.