{"title":"平面p位自仿射测度的谱","authors":"Jian Cao","doi":"10.1016/j.jmaa.2025.129587","DOIUrl":null,"url":null,"abstract":"<div><div>For a prime number <span><math><mi>p</mi><mo>≥</mo><mn>3</mn></math></span>, let <span><math><mi>A</mi><mo>∈</mo><msub><mrow><mi>M</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>Z</mi><mo>)</mo></math></span> be an expanding matrix and let <span><math><mi>B</mi><mo>⊂</mo><msup><mrow><mi>Z</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> be a <em>p</em>-element digit set satisfying that<span><span><span><math><mrow><mi>Z</mi><mo>(</mo><msub><mrow><mover><mrow><mi>δ</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></mrow><mrow><mi>B</mi></mrow></msub><mo>)</mo><mo>=</mo><munderover><mo>⋃</mo><mrow><mi>j</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>p</mi><mo>−</mo><mn>1</mn></mrow></munderover><mo>(</mo><mfrac><mrow><mi>j</mi></mrow><mrow><mi>p</mi></mrow></mfrac><mrow><mo>(</mo><mtable><mtr><mtd><mi>ω</mi></mtd></mtr><mtr><mtd><mi>ρ</mi></mtd></mtr></mtable><mo>)</mo></mrow><mo>+</mo><msup><mrow><mi>Z</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo><mo>,</mo></mrow></math></span></span></span> where <span><math><mo>{</mo><mi>ρ</mi><mo>,</mo><mi>ω</mi><mo>}</mo><mo>⊂</mo><mo>{</mo><mn>1</mn><mo>,</mo><mo>⋯</mo><mo>,</mo><mi>p</mi><mo>−</mo><mn>1</mn><mo>}</mo></math></span> and <span><math><mi>gcd</mi><mo></mo><mo>(</mo><mi>ρ</mi><mo>,</mo><mi>ω</mi><mo>)</mo><mo>=</mo><mn>1</mn></math></span>. Here <span><math><mi>Z</mi><mo>(</mo><msub><mrow><mover><mrow><mi>δ</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></mrow><mrow><mi>B</mi></mrow></msub><mo>)</mo></math></span> denotes the zero set of the function <span><math><msub><mrow><mover><mrow><mi>δ</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></mrow><mrow><mi>B</mi></mrow></msub></math></span>. The associated self-affine measure <span><math><msub><mrow><mi>μ</mi></mrow><mrow><mi>A</mi><mo>,</mo><mi>B</mi></mrow></msub></math></span> is generated by the iterated function system (IFS):<span><span><span><math><msub><mrow><mo>{</mo><msub><mrow><mi>f</mi></mrow><mrow><mi>b</mi></mrow></msub><mo>:</mo><msub><mrow><mi>f</mi></mrow><mrow><mi>b</mi></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo><mo>=</mo><msup><mrow><mi>A</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mo>(</mo><mi>x</mi><mo>+</mo><mi>b</mi><mo>)</mo><mo>,</mo><mi>x</mi><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>}</mo></mrow><mrow><mi>b</mi><mo>∈</mo><mi>B</mi></mrow></msub><mo>.</mo></math></span></span></span> In this paper, some equivalent conditions for the self-affine measure <span><math><msub><mrow><mi>μ</mi></mrow><mrow><mi>A</mi><mo>,</mo><mi>B</mi></mrow></msub></math></span> to be spectral are obtained. This extends the result of An, He and Tao <span><span>[2]</span></span>.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"549 2","pages":"Article 129587"},"PeriodicalIF":1.2000,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the spectra of planar self-affine measures with p digits\",\"authors\":\"Jian Cao\",\"doi\":\"10.1016/j.jmaa.2025.129587\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>For a prime number <span><math><mi>p</mi><mo>≥</mo><mn>3</mn></math></span>, let <span><math><mi>A</mi><mo>∈</mo><msub><mrow><mi>M</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>Z</mi><mo>)</mo></math></span> be an expanding matrix and let <span><math><mi>B</mi><mo>⊂</mo><msup><mrow><mi>Z</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> be a <em>p</em>-element digit set satisfying that<span><span><span><math><mrow><mi>Z</mi><mo>(</mo><msub><mrow><mover><mrow><mi>δ</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></mrow><mrow><mi>B</mi></mrow></msub><mo>)</mo><mo>=</mo><munderover><mo>⋃</mo><mrow><mi>j</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>p</mi><mo>−</mo><mn>1</mn></mrow></munderover><mo>(</mo><mfrac><mrow><mi>j</mi></mrow><mrow><mi>p</mi></mrow></mfrac><mrow><mo>(</mo><mtable><mtr><mtd><mi>ω</mi></mtd></mtr><mtr><mtd><mi>ρ</mi></mtd></mtr></mtable><mo>)</mo></mrow><mo>+</mo><msup><mrow><mi>Z</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo><mo>,</mo></mrow></math></span></span></span> where <span><math><mo>{</mo><mi>ρ</mi><mo>,</mo><mi>ω</mi><mo>}</mo><mo>⊂</mo><mo>{</mo><mn>1</mn><mo>,</mo><mo>⋯</mo><mo>,</mo><mi>p</mi><mo>−</mo><mn>1</mn><mo>}</mo></math></span> and <span><math><mi>gcd</mi><mo></mo><mo>(</mo><mi>ρ</mi><mo>,</mo><mi>ω</mi><mo>)</mo><mo>=</mo><mn>1</mn></math></span>. Here <span><math><mi>Z</mi><mo>(</mo><msub><mrow><mover><mrow><mi>δ</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></mrow><mrow><mi>B</mi></mrow></msub><mo>)</mo></math></span> denotes the zero set of the function <span><math><msub><mrow><mover><mrow><mi>δ</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></mrow><mrow><mi>B</mi></mrow></msub></math></span>. The associated self-affine measure <span><math><msub><mrow><mi>μ</mi></mrow><mrow><mi>A</mi><mo>,</mo><mi>B</mi></mrow></msub></math></span> is generated by the iterated function system (IFS):<span><span><span><math><msub><mrow><mo>{</mo><msub><mrow><mi>f</mi></mrow><mrow><mi>b</mi></mrow></msub><mo>:</mo><msub><mrow><mi>f</mi></mrow><mrow><mi>b</mi></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo><mo>=</mo><msup><mrow><mi>A</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mo>(</mo><mi>x</mi><mo>+</mo><mi>b</mi><mo>)</mo><mo>,</mo><mi>x</mi><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>}</mo></mrow><mrow><mi>b</mi><mo>∈</mo><mi>B</mi></mrow></msub><mo>.</mo></math></span></span></span> In this paper, some equivalent conditions for the self-affine measure <span><math><msub><mrow><mi>μ</mi></mrow><mrow><mi>A</mi><mo>,</mo><mi>B</mi></mrow></msub></math></span> to be spectral are obtained. This extends the result of An, He and Tao <span><span>[2]</span></span>.</div></div>\",\"PeriodicalId\":50147,\"journal\":{\"name\":\"Journal of Mathematical Analysis and Applications\",\"volume\":\"549 2\",\"pages\":\"Article 129587\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Analysis and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022247X25003683\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X25003683","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
On the spectra of planar self-affine measures with p digits
For a prime number , let be an expanding matrix and let be a p-element digit set satisfying that where and . Here denotes the zero set of the function . The associated self-affine measure is generated by the iterated function system (IFS): In this paper, some equivalent conditions for the self-affine measure to be spectral are obtained. This extends the result of An, He and Tao [2].
期刊介绍:
The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions.
Papers are sought which employ one or more of the following areas of classical analysis:
• Analytic number theory
• Functional analysis and operator theory
• Real and harmonic analysis
• Complex analysis
• Numerical analysis
• Applied mathematics
• Partial differential equations
• Dynamical systems
• Control and Optimization
• Probability
• Mathematical biology
• Combinatorics
• Mathematical physics.