社交媒体中换码攻击性语言的文体特征

IF 8.2 2区 管理学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Lina Zhou , Zhe Fu
{"title":"社交媒体中换码攻击性语言的文体特征","authors":"Lina Zhou ,&nbsp;Zhe Fu","doi":"10.1016/j.im.2025.104153","DOIUrl":null,"url":null,"abstract":"<div><div>Offensive language is a significant detriment to social media environments. Existing research predominantly assumes monolingual expression, overlooking the prevalent behavior of code-switching (CS). To address this critical knowledge gap, this study identifies and empirically validates the distinct stylometric characteristics of code-switched (CSed) offensive language. Additionally, we developed methods to construct the first social media dataset specifically for CSed offensive content. Our analysis of this dataset reveals that CSed offensive language exhibits unique stylometric characteristics; moreover, these characteristics vary between the language segments involved in the CS. Furthermore, incorporating these features significantly enhances the performance of offensive language detection models. These findings offer significant research and practical implications for social media researchers, platforms, moderators, and users.</div></div>","PeriodicalId":56291,"journal":{"name":"Information & Management","volume":"62 6","pages":"Article 104153"},"PeriodicalIF":8.2000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stylometric characteristics of code-switched offensive language in social media\",\"authors\":\"Lina Zhou ,&nbsp;Zhe Fu\",\"doi\":\"10.1016/j.im.2025.104153\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Offensive language is a significant detriment to social media environments. Existing research predominantly assumes monolingual expression, overlooking the prevalent behavior of code-switching (CS). To address this critical knowledge gap, this study identifies and empirically validates the distinct stylometric characteristics of code-switched (CSed) offensive language. Additionally, we developed methods to construct the first social media dataset specifically for CSed offensive content. Our analysis of this dataset reveals that CSed offensive language exhibits unique stylometric characteristics; moreover, these characteristics vary between the language segments involved in the CS. Furthermore, incorporating these features significantly enhances the performance of offensive language detection models. These findings offer significant research and practical implications for social media researchers, platforms, moderators, and users.</div></div>\",\"PeriodicalId\":56291,\"journal\":{\"name\":\"Information & Management\",\"volume\":\"62 6\",\"pages\":\"Article 104153\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2025-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information & Management\",\"FirstCategoryId\":\"91\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378720625000564\",\"RegionNum\":2,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information & Management","FirstCategoryId":"91","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378720625000564","RegionNum":2,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

攻击性语言对社交媒体环境是一种严重的损害。现有的研究主要假设单语表达,忽视了普遍存在的语码转换行为。为了解决这一关键的知识差距,本研究确定并实证验证了代码转换(CSed)攻击性语言的独特风格特征。此外,我们开发了专门针对CSed攻击性内容构建第一个社交媒体数据集的方法。我们对该数据集的分析表明,CSed攻击性语言表现出独特的文体特征;此外,这些特征在CS所涉及的语言段之间也有所不同。此外,结合这些特征可以显著提高攻击性语言检测模型的性能。这些发现为社交媒体研究人员、平台、版主和用户提供了重要的研究和实际意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stylometric characteristics of code-switched offensive language in social media
Offensive language is a significant detriment to social media environments. Existing research predominantly assumes monolingual expression, overlooking the prevalent behavior of code-switching (CS). To address this critical knowledge gap, this study identifies and empirically validates the distinct stylometric characteristics of code-switched (CSed) offensive language. Additionally, we developed methods to construct the first social media dataset specifically for CSed offensive content. Our analysis of this dataset reveals that CSed offensive language exhibits unique stylometric characteristics; moreover, these characteristics vary between the language segments involved in the CS. Furthermore, incorporating these features significantly enhances the performance of offensive language detection models. These findings offer significant research and practical implications for social media researchers, platforms, moderators, and users.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Information & Management
Information & Management 工程技术-计算机:信息系统
CiteScore
17.90
自引率
6.10%
发文量
123
审稿时长
1 months
期刊介绍: Information & Management is a publication that caters to researchers in the field of information systems as well as managers, professionals, administrators, and senior executives involved in designing, implementing, and managing Information Systems Applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信