Gröbner基和Krull维的Lovász-Saks-Sherijver理想关联到一棵树上

IF 0.8 2区 数学 Q2 MATHEMATICS
Mohammad Farrokhi D. G. , Ali Akbar Yazdan Pour
{"title":"Gröbner基和Krull维的Lovász-Saks-Sherijver理想关联到一棵树上","authors":"Mohammad Farrokhi D. G. ,&nbsp;Ali Akbar Yazdan Pour","doi":"10.1016/j.jalgebra.2025.03.049","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><mi>K</mi></math></span> be a field and <em>n</em> be a positive integer. Let <span><math><mi>Γ</mi><mo>=</mo><mo>(</mo><mo>[</mo><mi>n</mi><mo>]</mo><mo>,</mo><mi>E</mi><mo>)</mo></math></span> be a simple graph, where <span><math><mo>[</mo><mi>n</mi><mo>]</mo><mo>=</mo><mo>{</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>n</mi><mo>}</mo></math></span>. If <span><math><mi>S</mi><mo>=</mo><mi>K</mi><mo>[</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>,</mo><msub><mrow><mi>y</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>y</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>]</mo></math></span> is a polynomial ring, then the graded ideal<span><span><span><math><msubsup><mrow><mi>L</mi></mrow><mrow><mi>Γ</mi></mrow><mrow><mi>K</mi></mrow></msubsup><mo>(</mo><mn>2</mn><mo>)</mo><mo>=</mo><mrow><mo>(</mo><msub><mrow><mi>x</mi></mrow><mrow><mi>i</mi></mrow></msub><msub><mrow><mi>x</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>+</mo><msub><mrow><mi>y</mi></mrow><mrow><mi>i</mi></mrow></msub><msub><mrow><mi>y</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>:</mo><mspace></mspace><mo>{</mo><mi>i</mi><mo>,</mo><mi>j</mi><mo>}</mo><mo>∈</mo><mi>E</mi><mo>(</mo><mi>Γ</mi><mo>)</mo><mo>)</mo></mrow><mo>⊂</mo><mi>S</mi><mo>,</mo></math></span></span></span> is called the Lovász-Saks-Schrijver ideal, LSS-ideal for short, of Γ with respect to <span><math><mi>K</mi></math></span>. In the present paper, we compute a Gröbner basis of this ideal with respect to lexicographic ordering induced by <span><math><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>&gt;</mo><mo>⋯</mo><mo>&gt;</mo><msub><mrow><mi>x</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>&gt;</mo><msub><mrow><mi>y</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>&gt;</mo><mo>⋯</mo><mo>&gt;</mo><msub><mrow><mi>y</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> when <span><math><mi>Γ</mi><mo>=</mo><mi>T</mi></math></span> is a tree. As a result, we show that it is independent of the choice of the ground field <span><math><mi>K</mi></math></span> and compute the Hilbert series of <span><math><msubsup><mrow><mi>L</mi></mrow><mrow><mi>T</mi></mrow><mrow><mi>K</mi></mrow></msubsup><mo>(</mo><mn>2</mn><mo>)</mo></math></span>. Finally, we present concrete combinatorial formulas to obtain the Krull dimension of <span><math><mi>S</mi><mo>/</mo><msubsup><mrow><mi>L</mi></mrow><mrow><mi>T</mi></mrow><mrow><mi>K</mi></mrow></msubsup><mo>(</mo><mn>2</mn><mo>)</mo></math></span> as well as lower and upper bounds for Krull dimension.</div></div>","PeriodicalId":14888,"journal":{"name":"Journal of Algebra","volume":"678 ","pages":"Pages 224-252"},"PeriodicalIF":0.8000,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gröbner basis and Krull dimension of the Lovász-Saks-Sherijver ideal associated to a tree\",\"authors\":\"Mohammad Farrokhi D. G. ,&nbsp;Ali Akbar Yazdan Pour\",\"doi\":\"10.1016/j.jalgebra.2025.03.049\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Let <span><math><mi>K</mi></math></span> be a field and <em>n</em> be a positive integer. Let <span><math><mi>Γ</mi><mo>=</mo><mo>(</mo><mo>[</mo><mi>n</mi><mo>]</mo><mo>,</mo><mi>E</mi><mo>)</mo></math></span> be a simple graph, where <span><math><mo>[</mo><mi>n</mi><mo>]</mo><mo>=</mo><mo>{</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>n</mi><mo>}</mo></math></span>. If <span><math><mi>S</mi><mo>=</mo><mi>K</mi><mo>[</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>,</mo><msub><mrow><mi>y</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>y</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>]</mo></math></span> is a polynomial ring, then the graded ideal<span><span><span><math><msubsup><mrow><mi>L</mi></mrow><mrow><mi>Γ</mi></mrow><mrow><mi>K</mi></mrow></msubsup><mo>(</mo><mn>2</mn><mo>)</mo><mo>=</mo><mrow><mo>(</mo><msub><mrow><mi>x</mi></mrow><mrow><mi>i</mi></mrow></msub><msub><mrow><mi>x</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>+</mo><msub><mrow><mi>y</mi></mrow><mrow><mi>i</mi></mrow></msub><msub><mrow><mi>y</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>:</mo><mspace></mspace><mo>{</mo><mi>i</mi><mo>,</mo><mi>j</mi><mo>}</mo><mo>∈</mo><mi>E</mi><mo>(</mo><mi>Γ</mi><mo>)</mo><mo>)</mo></mrow><mo>⊂</mo><mi>S</mi><mo>,</mo></math></span></span></span> is called the Lovász-Saks-Schrijver ideal, LSS-ideal for short, of Γ with respect to <span><math><mi>K</mi></math></span>. In the present paper, we compute a Gröbner basis of this ideal with respect to lexicographic ordering induced by <span><math><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>&gt;</mo><mo>⋯</mo><mo>&gt;</mo><msub><mrow><mi>x</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>&gt;</mo><msub><mrow><mi>y</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>&gt;</mo><mo>⋯</mo><mo>&gt;</mo><msub><mrow><mi>y</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> when <span><math><mi>Γ</mi><mo>=</mo><mi>T</mi></math></span> is a tree. As a result, we show that it is independent of the choice of the ground field <span><math><mi>K</mi></math></span> and compute the Hilbert series of <span><math><msubsup><mrow><mi>L</mi></mrow><mrow><mi>T</mi></mrow><mrow><mi>K</mi></mrow></msubsup><mo>(</mo><mn>2</mn><mo>)</mo></math></span>. Finally, we present concrete combinatorial formulas to obtain the Krull dimension of <span><math><mi>S</mi><mo>/</mo><msubsup><mrow><mi>L</mi></mrow><mrow><mi>T</mi></mrow><mrow><mi>K</mi></mrow></msubsup><mo>(</mo><mn>2</mn><mo>)</mo></math></span> as well as lower and upper bounds for Krull dimension.</div></div>\",\"PeriodicalId\":14888,\"journal\":{\"name\":\"Journal of Algebra\",\"volume\":\"678 \",\"pages\":\"Pages 224-252\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Algebra\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021869325002066\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021869325002066","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设K是一个域,n是一个正整数。让Γ= ([n], E)是一个简单的图,在[n] ={1,…,n}。如果S=K[x1,…,xn,y1,…,yn]是多项式环,则分级idealLΓK(2)=(xixj+yiyj:{i,j}∈E(Γ))∧S称为Γ相对于K的Lovász-Saks-Schrijver理想,简称lss理想。在本文中,当Γ=T是树时,我们计算了该理想相对于由x1>;⋯>xn>y1>⋯>;yn诱导的字典序的Gröbner基。因此,我们证明了它与地面场K的选择无关,并计算了LTK(2)的Hilbert级数。最后,给出了S/LTK(2)的Krull维数的具体组合公式以及Krull维数的下界和上界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Gröbner basis and Krull dimension of the Lovász-Saks-Sherijver ideal associated to a tree
Let K be a field and n be a positive integer. Let Γ=([n],E) be a simple graph, where [n]={1,,n}. If S=K[x1,,xn,y1,,yn] is a polynomial ring, then the graded idealLΓK(2)=(xixj+yiyj:{i,j}E(Γ))S, is called the Lovász-Saks-Schrijver ideal, LSS-ideal for short, of Γ with respect to K. In the present paper, we compute a Gröbner basis of this ideal with respect to lexicographic ordering induced by x1>>xn>y1>>yn when Γ=T is a tree. As a result, we show that it is independent of the choice of the ground field K and compute the Hilbert series of LTK(2). Finally, we present concrete combinatorial formulas to obtain the Krull dimension of S/LTK(2) as well as lower and upper bounds for Krull dimension.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Algebra
Journal of Algebra 数学-数学
CiteScore
1.50
自引率
22.20%
发文量
414
审稿时长
2-4 weeks
期刊介绍: The Journal of Algebra is a leading international journal and publishes papers that demonstrate high quality research results in algebra and related computational aspects. Only the very best and most interesting papers are to be considered for publication in the journal. With this in mind, it is important that the contribution offer a substantial result that will have a lasting effect upon the field. The journal also seeks work that presents innovative techniques that offer promising results for future research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信