Yuanfen Song , Yuxia Li , Maurizio Brunetti , Jianfeng Wang
{"title":"图的偏心矩阵的第三大特征值","authors":"Yuanfen Song , Yuxia Li , Maurizio Brunetti , Jianfeng Wang","doi":"10.1016/j.dam.2025.04.039","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><mrow><mi>D</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> denote the distance matrix of a connected graph <span><math><mi>G</mi></math></span>. The eccentricity matrix (or anti-adjacency matrix) of <span><math><mi>G</mi></math></span> is obtained from <span><math><mrow><mi>D</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> by retaining in each row and each column only the maximal entries. In this paper, all the graphs with third largest eccentricity eigenvalue in the interval <span><math><mrow><mo>(</mo><mo>−</mo><mn>1</mn><mo>,</mo><mn>0</mn><mo>)</mo></mrow></math></span> are detected. It turns out that these graphs are all found among the chain graphs with (nonempty) four cells and the graphs of type <span><math><mrow><msub><mrow><mi>K</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>∨</mo><mrow><mo>(</mo><mi>G</mi><mo>∪</mo><mi>k</mi><msub><mrow><mi>K</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>)</mo></mrow></mrow></math></span>, where <span><math><mrow><mi>k</mi><mo>⩾</mo><mn>0</mn></mrow></math></span> and <span><math><mi>G</mi></math></span> is a chain graph with at most ten cells.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"372 ","pages":"Pages 237-259"},"PeriodicalIF":1.0000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the third largest eigenvalue of eccentricity matrices of graphs\",\"authors\":\"Yuanfen Song , Yuxia Li , Maurizio Brunetti , Jianfeng Wang\",\"doi\":\"10.1016/j.dam.2025.04.039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Let <span><math><mrow><mi>D</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> denote the distance matrix of a connected graph <span><math><mi>G</mi></math></span>. The eccentricity matrix (or anti-adjacency matrix) of <span><math><mi>G</mi></math></span> is obtained from <span><math><mrow><mi>D</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> by retaining in each row and each column only the maximal entries. In this paper, all the graphs with third largest eccentricity eigenvalue in the interval <span><math><mrow><mo>(</mo><mo>−</mo><mn>1</mn><mo>,</mo><mn>0</mn><mo>)</mo></mrow></math></span> are detected. It turns out that these graphs are all found among the chain graphs with (nonempty) four cells and the graphs of type <span><math><mrow><msub><mrow><mi>K</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>∨</mo><mrow><mo>(</mo><mi>G</mi><mo>∪</mo><mi>k</mi><msub><mrow><mi>K</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>)</mo></mrow></mrow></math></span>, where <span><math><mrow><mi>k</mi><mo>⩾</mo><mn>0</mn></mrow></math></span> and <span><math><mi>G</mi></math></span> is a chain graph with at most ten cells.</div></div>\",\"PeriodicalId\":50573,\"journal\":{\"name\":\"Discrete Applied Mathematics\",\"volume\":\"372 \",\"pages\":\"Pages 237-259\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0166218X2500215X\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166218X2500215X","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
On the third largest eigenvalue of eccentricity matrices of graphs
Let denote the distance matrix of a connected graph . The eccentricity matrix (or anti-adjacency matrix) of is obtained from by retaining in each row and each column only the maximal entries. In this paper, all the graphs with third largest eccentricity eigenvalue in the interval are detected. It turns out that these graphs are all found among the chain graphs with (nonempty) four cells and the graphs of type , where and is a chain graph with at most ten cells.
期刊介绍:
The aim of Discrete Applied Mathematics is to bring together research papers in different areas of algorithmic and applicable discrete mathematics as well as applications of combinatorial mathematics to informatics and various areas of science and technology. Contributions presented to the journal can be research papers, short notes, surveys, and possibly research problems. The "Communications" section will be devoted to the fastest possible publication of recent research results that are checked and recommended for publication by a member of the Editorial Board. The journal will also publish a limited number of book announcements as well as proceedings of conferences. These proceedings will be fully refereed and adhere to the normal standards of the journal.
Potential authors are advised to view the journal and the open calls-for-papers of special issues before submitting their manuscripts. Only high-quality, original work that is within the scope of the journal or the targeted special issue will be considered.