{"title":"86种与室内空气监测相关的挥发性和半挥发性有机化合物扩散取样7天吸收率的实验测定及其对暴露时间和室内气候的敏感性研究","authors":"Matthias Richter, Florian Schühle","doi":"10.1016/j.indenv.2025.100095","DOIUrl":null,"url":null,"abstract":"<div><div>This study aimed to experimentally determine uptake rates for 86 indoor relevant volatile and semi-volatile organic compounds (VOC, SVOC) for the passive sampler type Perkin Elmer/Markes™ with Tenax® TA as sorbent, which was used in the German Environmental Survey on Health (GerES VI) carried out by the German Environmental Agency (UBA) in the years 2023–2024. For this purpose, single reference gas atmospheres of 76 pure VOCs (liquid at room temperature) and a group of 10 SVOCs and VOCs (solid at room temperature) were generated using two generation procedures. By exposing the samplers to individual components, it was ruled out that interactions in a mixture have an influence on the uptake rate. Another aspect was to precisely describe the methodology and the resulting uncertainties, as there are gaps in the literature in this regard. The selection of the compounds was based on the findings of the preceding GerES V study for which data was missing or needed to be verified. In each experiment, a number of six passive samplers was exposed to the test gas atmospheres in dynamically operated exposure chambers for seven days. The sensitivity of the uptake rates of a group of 10 selected VOCs to variations in exposure time, ambient temperature, and air humidity in a multi-component reference gas atmosphere was investigated. Here, a decrease in the uptake rate with the exposure time could be observed stabilising from the fifth day of exposure onwards. A significant effect of temperature and humidity on the uptake rate was not apparent. The determined uptake rates exhibit uncertainties of < 20 % for 71 substances, and < 10 % for 51 substances which are also in good agreement with the literature, if already published elsewhere. The quantity of investigated substances, the detailed description of the methodology used to determine the uptake rates complemented by the respective uncertainties, as well as the compilation of comparative data, contribute to a better assessment of the quality and relevance of such data, which had not been published before.</div></div>","PeriodicalId":100665,"journal":{"name":"Indoor Environments","volume":"2 2","pages":"Article 100095"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental determination of 7-day uptake rates for diffusive sampling of 86 volatile and semi-volatile organic compounds relevant for indoor air monitoring and investigation on their sensitivity to exposure time and indoor climate\",\"authors\":\"Matthias Richter, Florian Schühle\",\"doi\":\"10.1016/j.indenv.2025.100095\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study aimed to experimentally determine uptake rates for 86 indoor relevant volatile and semi-volatile organic compounds (VOC, SVOC) for the passive sampler type Perkin Elmer/Markes™ with Tenax® TA as sorbent, which was used in the German Environmental Survey on Health (GerES VI) carried out by the German Environmental Agency (UBA) in the years 2023–2024. For this purpose, single reference gas atmospheres of 76 pure VOCs (liquid at room temperature) and a group of 10 SVOCs and VOCs (solid at room temperature) were generated using two generation procedures. By exposing the samplers to individual components, it was ruled out that interactions in a mixture have an influence on the uptake rate. Another aspect was to precisely describe the methodology and the resulting uncertainties, as there are gaps in the literature in this regard. The selection of the compounds was based on the findings of the preceding GerES V study for which data was missing or needed to be verified. In each experiment, a number of six passive samplers was exposed to the test gas atmospheres in dynamically operated exposure chambers for seven days. The sensitivity of the uptake rates of a group of 10 selected VOCs to variations in exposure time, ambient temperature, and air humidity in a multi-component reference gas atmosphere was investigated. Here, a decrease in the uptake rate with the exposure time could be observed stabilising from the fifth day of exposure onwards. A significant effect of temperature and humidity on the uptake rate was not apparent. The determined uptake rates exhibit uncertainties of < 20 % for 71 substances, and < 10 % for 51 substances which are also in good agreement with the literature, if already published elsewhere. The quantity of investigated substances, the detailed description of the methodology used to determine the uptake rates complemented by the respective uncertainties, as well as the compilation of comparative data, contribute to a better assessment of the quality and relevance of such data, which had not been published before.</div></div>\",\"PeriodicalId\":100665,\"journal\":{\"name\":\"Indoor Environments\",\"volume\":\"2 2\",\"pages\":\"Article 100095\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indoor Environments\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2950362025000244\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indoor Environments","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2950362025000244","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Experimental determination of 7-day uptake rates for diffusive sampling of 86 volatile and semi-volatile organic compounds relevant for indoor air monitoring and investigation on their sensitivity to exposure time and indoor climate
This study aimed to experimentally determine uptake rates for 86 indoor relevant volatile and semi-volatile organic compounds (VOC, SVOC) for the passive sampler type Perkin Elmer/Markes™ with Tenax® TA as sorbent, which was used in the German Environmental Survey on Health (GerES VI) carried out by the German Environmental Agency (UBA) in the years 2023–2024. For this purpose, single reference gas atmospheres of 76 pure VOCs (liquid at room temperature) and a group of 10 SVOCs and VOCs (solid at room temperature) were generated using two generation procedures. By exposing the samplers to individual components, it was ruled out that interactions in a mixture have an influence on the uptake rate. Another aspect was to precisely describe the methodology and the resulting uncertainties, as there are gaps in the literature in this regard. The selection of the compounds was based on the findings of the preceding GerES V study for which data was missing or needed to be verified. In each experiment, a number of six passive samplers was exposed to the test gas atmospheres in dynamically operated exposure chambers for seven days. The sensitivity of the uptake rates of a group of 10 selected VOCs to variations in exposure time, ambient temperature, and air humidity in a multi-component reference gas atmosphere was investigated. Here, a decrease in the uptake rate with the exposure time could be observed stabilising from the fifth day of exposure onwards. A significant effect of temperature and humidity on the uptake rate was not apparent. The determined uptake rates exhibit uncertainties of < 20 % for 71 substances, and < 10 % for 51 substances which are also in good agreement with the literature, if already published elsewhere. The quantity of investigated substances, the detailed description of the methodology used to determine the uptake rates complemented by the respective uncertainties, as well as the compilation of comparative data, contribute to a better assessment of the quality and relevance of such data, which had not been published before.