Laura Lis Ricardi , Felipe Zecchinati , Virginia Gabriela Perdomo , Cecilia Lorena Basiglio , Fabiana García , Maite Rocío Arana , Silvina Stella Maris Villanueva
{"title":"氧化应激促进Caco-2细胞中MRP2的翻译后下调:参与蛋白酶体降解和毒理学意义","authors":"Laura Lis Ricardi , Felipe Zecchinati , Virginia Gabriela Perdomo , Cecilia Lorena Basiglio , Fabiana García , Maite Rocío Arana , Silvina Stella Maris Villanueva","doi":"10.1016/j.fct.2025.115459","DOIUrl":null,"url":null,"abstract":"<div><div>The intestinal tract is highly susceptible to oxidative stress (OS), which impairs gut barrier function. Multidrug Resistance-Associated Protein 2 (MRP2) is a key efflux pump in the intestinal transcellular barrier, regulating toxicant and drug disposition. We here evaluated the effects of OS on MRP2 in Caco-2 cells treated with <em>tert</em>-butyl hydroperoxide (TBH). After 24 h, TBH 250 μM increased ROS production and lipid peroxidation while decreasing GSH content and SOD activity, confirming OS induction. Under these conditions, total MRP2 protein levels decreased, while P-gp levels remained unchanged. Correspondingly, MRP2 efflux activity decreased, impairing barrier function against ochratoxin A (OTA), a substrate of MRP2, and exacerbating OTA toxicity. Localization analysis revealed reduced apical MRP2 signal in TBH 250 group, with unchanged mRNA levels, indicating post-transcriptional regulation. Mechanistically, TBH induced rapid MRP2 internalization (30 min), mediated by cPKC and clathrin, without microtubule involvement, followed by proteasomal degradation at 24 h. Both processes were dependent on GSH depletion, as treatment with N-Acetyl-<span>l</span>-Cysteine (NAC) restored GSH levels, MRP2 localization, and activity. We provide here the first evidence that human intestinal MRP2 is post-translationally downregulated under specific OS conditions, highlighting its potential role in exacerbating xenobiotic absorption and toxicity in OS-related human diseases.</div></div>","PeriodicalId":317,"journal":{"name":"Food and Chemical Toxicology","volume":"201 ","pages":"Article 115459"},"PeriodicalIF":3.9000,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Oxidative stress promotes post-translational down-regulation of MRP2 in Caco-2 cells: Involvement of proteasomal degradation and toxicological implications\",\"authors\":\"Laura Lis Ricardi , Felipe Zecchinati , Virginia Gabriela Perdomo , Cecilia Lorena Basiglio , Fabiana García , Maite Rocío Arana , Silvina Stella Maris Villanueva\",\"doi\":\"10.1016/j.fct.2025.115459\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The intestinal tract is highly susceptible to oxidative stress (OS), which impairs gut barrier function. Multidrug Resistance-Associated Protein 2 (MRP2) is a key efflux pump in the intestinal transcellular barrier, regulating toxicant and drug disposition. We here evaluated the effects of OS on MRP2 in Caco-2 cells treated with <em>tert</em>-butyl hydroperoxide (TBH). After 24 h, TBH 250 μM increased ROS production and lipid peroxidation while decreasing GSH content and SOD activity, confirming OS induction. Under these conditions, total MRP2 protein levels decreased, while P-gp levels remained unchanged. Correspondingly, MRP2 efflux activity decreased, impairing barrier function against ochratoxin A (OTA), a substrate of MRP2, and exacerbating OTA toxicity. Localization analysis revealed reduced apical MRP2 signal in TBH 250 group, with unchanged mRNA levels, indicating post-transcriptional regulation. Mechanistically, TBH induced rapid MRP2 internalization (30 min), mediated by cPKC and clathrin, without microtubule involvement, followed by proteasomal degradation at 24 h. Both processes were dependent on GSH depletion, as treatment with N-Acetyl-<span>l</span>-Cysteine (NAC) restored GSH levels, MRP2 localization, and activity. We provide here the first evidence that human intestinal MRP2 is post-translationally downregulated under specific OS conditions, highlighting its potential role in exacerbating xenobiotic absorption and toxicity in OS-related human diseases.</div></div>\",\"PeriodicalId\":317,\"journal\":{\"name\":\"Food and Chemical Toxicology\",\"volume\":\"201 \",\"pages\":\"Article 115459\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Food and Chemical Toxicology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0278691525002273\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food and Chemical Toxicology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0278691525002273","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Oxidative stress promotes post-translational down-regulation of MRP2 in Caco-2 cells: Involvement of proteasomal degradation and toxicological implications
The intestinal tract is highly susceptible to oxidative stress (OS), which impairs gut barrier function. Multidrug Resistance-Associated Protein 2 (MRP2) is a key efflux pump in the intestinal transcellular barrier, regulating toxicant and drug disposition. We here evaluated the effects of OS on MRP2 in Caco-2 cells treated with tert-butyl hydroperoxide (TBH). After 24 h, TBH 250 μM increased ROS production and lipid peroxidation while decreasing GSH content and SOD activity, confirming OS induction. Under these conditions, total MRP2 protein levels decreased, while P-gp levels remained unchanged. Correspondingly, MRP2 efflux activity decreased, impairing barrier function against ochratoxin A (OTA), a substrate of MRP2, and exacerbating OTA toxicity. Localization analysis revealed reduced apical MRP2 signal in TBH 250 group, with unchanged mRNA levels, indicating post-transcriptional regulation. Mechanistically, TBH induced rapid MRP2 internalization (30 min), mediated by cPKC and clathrin, without microtubule involvement, followed by proteasomal degradation at 24 h. Both processes were dependent on GSH depletion, as treatment with N-Acetyl-l-Cysteine (NAC) restored GSH levels, MRP2 localization, and activity. We provide here the first evidence that human intestinal MRP2 is post-translationally downregulated under specific OS conditions, highlighting its potential role in exacerbating xenobiotic absorption and toxicity in OS-related human diseases.
期刊介绍:
Food and Chemical Toxicology (FCT), an internationally renowned journal, that publishes original research articles and reviews on toxic effects, in animals and humans, of natural or synthetic chemicals occurring in the human environment with particular emphasis on food, drugs, and chemicals, including agricultural and industrial safety, and consumer product safety. Areas such as safety evaluation of novel foods and ingredients, biotechnologically-derived products, and nanomaterials are included in the scope of the journal. FCT also encourages submission of papers on inter-relationships between nutrition and toxicology and on in vitro techniques, particularly those fostering the 3 Rs.
The principal aim of the journal is to publish high impact, scholarly work and to serve as a multidisciplinary forum for research in toxicology. Papers submitted will be judged on the basis of scientific originality and contribution to the field, quality and subject matter. Studies should address at least one of the following:
-Adverse physiological/biochemical, or pathological changes induced by specific defined substances
-New techniques for assessing potential toxicity, including molecular biology
-Mechanisms underlying toxic phenomena
-Toxicological examinations of specific chemicals or consumer products, both those showing adverse effects and those demonstrating safety, that meet current standards of scientific acceptability.
Authors must clearly and briefly identify what novel toxic effect (s) or toxic mechanism (s) of the chemical are being reported and what their significance is in the abstract. Furthermore, sufficient doses should be included in order to provide information on NOAEL/LOAEL values.