从临床样本中分离出的per黄奈瑟菌可减少流感病毒在呼吸道细胞中的复制

IF 2.6 Q1 DENTISTRY, ORAL SURGERY & MEDICINE
Keisuke Nishioka , Maki Nakagawa , Yoko Tanino , Takaaki Nakaya
{"title":"从临床样本中分离出的per黄奈瑟菌可减少流感病毒在呼吸道细胞中的复制","authors":"Keisuke Nishioka ,&nbsp;Maki Nakagawa ,&nbsp;Yoko Tanino ,&nbsp;Takaaki Nakaya","doi":"10.1016/j.job.2025.100665","DOIUrl":null,"url":null,"abstract":"<div><h3>Objectives</h3><div>Various bacteria are present in the oral cavity and constitute the oral microbiota. Although the oral microbiota has been analyzed using next-generation sequencing, few studies have investigated whether specific commensal bacteria directly affect immune responses to infections. Here, we focused on <em>Neisseria</em> species present in the oral cavity and investigated their effects on respiratory cells infected with several viruses.</div></div><div><h3>Methods</h3><div>Six <em>Neisseria</em> species were isolated from human saliva. The epithelial cell lines were stimulated with bacterial culture supernatants before viral infection. Changes in the viral susceptibility were assessed.</div></div><div><h3>Results</h3><div>Culture supernatants of two <em>Neisseria</em> species were found to affect cells susceptible to influenza viral infection and suppress influenza viral replication. The mechanism underlying the suppression of <em>N. perflava</em> was further investigated. This activity was observed in the 10–30 kDa protein range fractionated by ultrafiltration. Although viral replication was suppressed by stimulation with bacterial proteins, the infection efficiency of the virus and cytokine production were unaffected. Replication of SARS-CoV-2 and human rhinovirus were also suppressed.</div></div><div><h3>Conclusion</h3><div>Viral infection was performed after supernatant stimulation, suggesting that exposure to oral bacteria directly affects viral infection in the surrounding cells. This effect has been observed for several viruses. Viral genome replication in cells may be suppressed by enhanced expression of viral replication suppression genes. Further analyses are required to elucidate the detailed underlying mechanisms.</div></div>","PeriodicalId":45851,"journal":{"name":"Journal of Oral Biosciences","volume":"67 2","pages":"Article 100665"},"PeriodicalIF":2.6000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Neisseria perflava isolated from a clinical sample reduces influenza virus replication in respiratory cells\",\"authors\":\"Keisuke Nishioka ,&nbsp;Maki Nakagawa ,&nbsp;Yoko Tanino ,&nbsp;Takaaki Nakaya\",\"doi\":\"10.1016/j.job.2025.100665\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Objectives</h3><div>Various bacteria are present in the oral cavity and constitute the oral microbiota. Although the oral microbiota has been analyzed using next-generation sequencing, few studies have investigated whether specific commensal bacteria directly affect immune responses to infections. Here, we focused on <em>Neisseria</em> species present in the oral cavity and investigated their effects on respiratory cells infected with several viruses.</div></div><div><h3>Methods</h3><div>Six <em>Neisseria</em> species were isolated from human saliva. The epithelial cell lines were stimulated with bacterial culture supernatants before viral infection. Changes in the viral susceptibility were assessed.</div></div><div><h3>Results</h3><div>Culture supernatants of two <em>Neisseria</em> species were found to affect cells susceptible to influenza viral infection and suppress influenza viral replication. The mechanism underlying the suppression of <em>N. perflava</em> was further investigated. This activity was observed in the 10–30 kDa protein range fractionated by ultrafiltration. Although viral replication was suppressed by stimulation with bacterial proteins, the infection efficiency of the virus and cytokine production were unaffected. Replication of SARS-CoV-2 and human rhinovirus were also suppressed.</div></div><div><h3>Conclusion</h3><div>Viral infection was performed after supernatant stimulation, suggesting that exposure to oral bacteria directly affects viral infection in the surrounding cells. This effect has been observed for several viruses. Viral genome replication in cells may be suppressed by enhanced expression of viral replication suppression genes. Further analyses are required to elucidate the detailed underlying mechanisms.</div></div>\",\"PeriodicalId\":45851,\"journal\":{\"name\":\"Journal of Oral Biosciences\",\"volume\":\"67 2\",\"pages\":\"Article 100665\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Oral Biosciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1349007925000544\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"DENTISTRY, ORAL SURGERY & MEDICINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Oral Biosciences","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1349007925000544","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
引用次数: 0

摘要

目的口腔内存在多种细菌,构成口腔微生物群。虽然口腔微生物群已经使用新一代测序进行了分析,但很少有研究调查特定的共生菌是否直接影响对感染的免疫反应。本研究以口腔内存在的奈瑟菌为研究对象,研究了它们对感染几种病毒的呼吸道细胞的影响。方法从人唾液中分离出6种奈瑟菌。在病毒感染前用细菌培养上清液刺激上皮细胞系。评估病毒易感性的变化。结果两种奈瑟菌培养上清液均能影响流感病毒易感细胞,抑制流感病毒复制。进一步研究了黄花霉抑制的机制。在超滤分离的10-30 kDa蛋白范围内观察到这种活性。虽然细菌蛋白刺激可以抑制病毒复制,但病毒的感染效率和细胞因子的产生不受影响。SARS-CoV-2和人鼻病毒的复制也被抑制。结论上清刺激后发生病毒感染,提示口腔细菌暴露直接影响周围细胞的病毒感染。对几种病毒已观察到这种效应。病毒复制抑制基因的增强表达可以抑制细胞内病毒基因组的复制。需要进一步的分析来阐明详细的潜在机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Neisseria perflava isolated from a clinical sample reduces influenza virus replication in respiratory cells

Objectives

Various bacteria are present in the oral cavity and constitute the oral microbiota. Although the oral microbiota has been analyzed using next-generation sequencing, few studies have investigated whether specific commensal bacteria directly affect immune responses to infections. Here, we focused on Neisseria species present in the oral cavity and investigated their effects on respiratory cells infected with several viruses.

Methods

Six Neisseria species were isolated from human saliva. The epithelial cell lines were stimulated with bacterial culture supernatants before viral infection. Changes in the viral susceptibility were assessed.

Results

Culture supernatants of two Neisseria species were found to affect cells susceptible to influenza viral infection and suppress influenza viral replication. The mechanism underlying the suppression of N. perflava was further investigated. This activity was observed in the 10–30 kDa protein range fractionated by ultrafiltration. Although viral replication was suppressed by stimulation with bacterial proteins, the infection efficiency of the virus and cytokine production were unaffected. Replication of SARS-CoV-2 and human rhinovirus were also suppressed.

Conclusion

Viral infection was performed after supernatant stimulation, suggesting that exposure to oral bacteria directly affects viral infection in the surrounding cells. This effect has been observed for several viruses. Viral genome replication in cells may be suppressed by enhanced expression of viral replication suppression genes. Further analyses are required to elucidate the detailed underlying mechanisms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Oral Biosciences
Journal of Oral Biosciences DENTISTRY, ORAL SURGERY & MEDICINE-
CiteScore
4.40
自引率
12.50%
发文量
57
审稿时长
37 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信