酸预处理泡沫镍上原位掺镍CoMoO4纳米材料的高电容性研究

IF 4.3 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Mingwei Li, Hongxun Zhang, Yuhan zou
{"title":"酸预处理泡沫镍上原位掺镍CoMoO4纳米材料的高电容性研究","authors":"Mingwei Li,&nbsp;Hongxun Zhang,&nbsp;Yuhan zou","doi":"10.1016/j.jpcs.2025.112794","DOIUrl":null,"url":null,"abstract":"<div><div>Different from conventional methods that synthesize Ni-doped nanomaterials by introducing external Ni sources, this study developed an in-situ doping strategy using Hydrochloric acid, nitric acid, sulfuric acid, and oxalic acid treatments generated corresponding nickel salts (NiCl<sub>2</sub>, Ni(NO<sub>3</sub>)<sub>2</sub>, NiSO<sub>4</sub>, and NiC<sub>2</sub>O<sub>4</sub>) on nickel foams as Ni sources, enabling one-step hydrothermal synthesis of Ni-doped CoMoO<sub>4</sub> nanoelectrodes. The in situ Ni-doped CoMoO<sub>4</sub> nanomaterials synthesized on the four acidified pretreated nickel foams exhibited specific capacitances of 4680, 4500, 2700, and 2250 mF cm<sup>−2</sup> at 5 mA cm<sup>−2</sup>, respectively, significantly exceeding the 1690 mF cm<sup>−2</sup> achieved by undoped CoMoO<sub>4</sub> on conventional clean foams. An asymmetric supercapacitor (ASC) assembled with activated carbon and Ni-doped CoMoO<sub>4</sub> electrode material synthesized on hydrochloric acid pretreated nickel foam demonstrated a specific capacitance of 690 mF cm<sup>−2</sup> at 5 mA cm<sup>−2</sup>, along with a high energy density of 160.4 Wh·kg<sup>−1</sup> at 2600 W kg<sup>−1</sup> power density. Remarkably, the ASC retained 95 % capacitance after 10,000 cycles. These results highlight the potential of in-situ Ni-doped CoMoO<sub>4</sub> as a high-performance electrode material for advanced supercapacitors.</div></div>","PeriodicalId":16811,"journal":{"name":"Journal of Physics and Chemistry of Solids","volume":"205 ","pages":"Article 112794"},"PeriodicalIF":4.3000,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"In situ Ni-doped CoMoO4 nanomaterials on acid-pretreated nickel foam with high capacitive properties\",\"authors\":\"Mingwei Li,&nbsp;Hongxun Zhang,&nbsp;Yuhan zou\",\"doi\":\"10.1016/j.jpcs.2025.112794\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Different from conventional methods that synthesize Ni-doped nanomaterials by introducing external Ni sources, this study developed an in-situ doping strategy using Hydrochloric acid, nitric acid, sulfuric acid, and oxalic acid treatments generated corresponding nickel salts (NiCl<sub>2</sub>, Ni(NO<sub>3</sub>)<sub>2</sub>, NiSO<sub>4</sub>, and NiC<sub>2</sub>O<sub>4</sub>) on nickel foams as Ni sources, enabling one-step hydrothermal synthesis of Ni-doped CoMoO<sub>4</sub> nanoelectrodes. The in situ Ni-doped CoMoO<sub>4</sub> nanomaterials synthesized on the four acidified pretreated nickel foams exhibited specific capacitances of 4680, 4500, 2700, and 2250 mF cm<sup>−2</sup> at 5 mA cm<sup>−2</sup>, respectively, significantly exceeding the 1690 mF cm<sup>−2</sup> achieved by undoped CoMoO<sub>4</sub> on conventional clean foams. An asymmetric supercapacitor (ASC) assembled with activated carbon and Ni-doped CoMoO<sub>4</sub> electrode material synthesized on hydrochloric acid pretreated nickel foam demonstrated a specific capacitance of 690 mF cm<sup>−2</sup> at 5 mA cm<sup>−2</sup>, along with a high energy density of 160.4 Wh·kg<sup>−1</sup> at 2600 W kg<sup>−1</sup> power density. Remarkably, the ASC retained 95 % capacitance after 10,000 cycles. These results highlight the potential of in-situ Ni-doped CoMoO<sub>4</sub> as a high-performance electrode material for advanced supercapacitors.</div></div>\",\"PeriodicalId\":16811,\"journal\":{\"name\":\"Journal of Physics and Chemistry of Solids\",\"volume\":\"205 \",\"pages\":\"Article 112794\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-04-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics and Chemistry of Solids\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S002236972500246X\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics and Chemistry of Solids","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002236972500246X","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

与传统通过引入外部Ni源合成Ni掺杂纳米材料的方法不同,本研究采用原位掺杂策略,采用盐酸、硝酸、硫酸和草酸处理,在泡沫镍上生成相应的镍盐(NiCl2、Ni(NO3)2、NiSO4和NiC2O4)作为Ni源,实现了一步水热合成Ni掺杂CoMoO4纳米电极。在四种酸化预处理泡沫镍上合成的原位掺镍CoMoO4纳米材料在5 mA cm - 2时的比电容分别为4680、4500、2700和2250 mF cm - 2,显著高于未掺杂CoMoO4在常规清洁泡沫上获得的1690 mF cm - 2。在盐酸预处理的泡沫镍上合成了以活性炭和ni掺杂的CoMoO4电极材料组装的非对称超级电容器(ASC),在5 mA cm - 2时的比电容为690 mF cm - 2,在2600 W kg - 1功率密度下的能量密度为160.4 Wh·kg - 1。值得注意的是,ASC在10,000次循环后保持了95%的电容。这些结果突出了原位ni掺杂CoMoO4作为先进超级电容器高性能电极材料的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
In situ Ni-doped CoMoO4 nanomaterials on acid-pretreated nickel foam with high capacitive properties
Different from conventional methods that synthesize Ni-doped nanomaterials by introducing external Ni sources, this study developed an in-situ doping strategy using Hydrochloric acid, nitric acid, sulfuric acid, and oxalic acid treatments generated corresponding nickel salts (NiCl2, Ni(NO3)2, NiSO4, and NiC2O4) on nickel foams as Ni sources, enabling one-step hydrothermal synthesis of Ni-doped CoMoO4 nanoelectrodes. The in situ Ni-doped CoMoO4 nanomaterials synthesized on the four acidified pretreated nickel foams exhibited specific capacitances of 4680, 4500, 2700, and 2250 mF cm−2 at 5 mA cm−2, respectively, significantly exceeding the 1690 mF cm−2 achieved by undoped CoMoO4 on conventional clean foams. An asymmetric supercapacitor (ASC) assembled with activated carbon and Ni-doped CoMoO4 electrode material synthesized on hydrochloric acid pretreated nickel foam demonstrated a specific capacitance of 690 mF cm−2 at 5 mA cm−2, along with a high energy density of 160.4 Wh·kg−1 at 2600 W kg−1 power density. Remarkably, the ASC retained 95 % capacitance after 10,000 cycles. These results highlight the potential of in-situ Ni-doped CoMoO4 as a high-performance electrode material for advanced supercapacitors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Physics and Chemistry of Solids
Journal of Physics and Chemistry of Solids 工程技术-化学综合
CiteScore
7.80
自引率
2.50%
发文量
605
审稿时长
40 days
期刊介绍: The Journal of Physics and Chemistry of Solids is a well-established international medium for publication of archival research in condensed matter and materials sciences. Areas of interest broadly include experimental and theoretical research on electronic, magnetic, spectroscopic and structural properties as well as the statistical mechanics and thermodynamics of materials. The focus is on gaining physical and chemical insight into the properties and potential applications of condensed matter systems. Within the broad scope of the journal, beyond regular contributions, the editors have identified submissions in the following areas of physics and chemistry of solids to be of special current interest to the journal: Low-dimensional systems Exotic states of quantum electron matter including topological phases Energy conversion and storage Interfaces, nanoparticles and catalysts.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信