Cesar E.P. Villegas , Enesio Marinho Jr. , A.C. Dias , Pedro Venezuela , Alexandre R. Rocha
{"title":"用于单结和串联太阳能电池的新型薄膜TiS3的光学性质","authors":"Cesar E.P. Villegas , Enesio Marinho Jr. , A.C. Dias , Pedro Venezuela , Alexandre R. Rocha","doi":"10.1016/j.solmat.2025.113635","DOIUrl":null,"url":null,"abstract":"<div><div>Sub-micrometer thin films are promising platforms for emerging flexible photovoltaic devices. Although the current market already produces efficient solar cells, the average wafer thickness of these devices remains far from the sub-micrometer scale, making them susceptible to cracking under bending stress and thus precluding their use in flexible device applications. Due to its earth abundance, non-toxicity, and low elastic modulus, titanium trisulfide (TiS<sub>3</sub>) has emerged as a promising alternative for flexible device applications. Here, using excited-state density functional calculations combined with the transfer matrix approach, we perform an optical analysis and assess the efficiency of a prototype photovoltaic device based on sub-micrometer TiS<sub>3</sub> thin films. Using optical constants obtained from our first-principles calculations, we evaluate the photovoltaic response of a single-junction device in the radiative limit, finding that a 140 nm-thick active layer achieves a maximum power conversion efficiency of approximately 22%. Additionally, we investigate tandem solar cells that incorporate TiS<sub>3</sub> into perovskite thin films, and find that the lower and upper power conversion efficiencies range from approximately 18% to 33%. Overall, our results suggest great potential for using TiS<sub>3</sub> thin films as an active layer in the design of highly efficient flexible solar cells.</div></div>","PeriodicalId":429,"journal":{"name":"Solar Energy Materials and Solar Cells","volume":"289 ","pages":"Article 113635"},"PeriodicalIF":6.3000,"publicationDate":"2025-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optical properties of TiS3 as a novel thin film for single-junction and tandem solar cells\",\"authors\":\"Cesar E.P. Villegas , Enesio Marinho Jr. , A.C. Dias , Pedro Venezuela , Alexandre R. Rocha\",\"doi\":\"10.1016/j.solmat.2025.113635\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Sub-micrometer thin films are promising platforms for emerging flexible photovoltaic devices. Although the current market already produces efficient solar cells, the average wafer thickness of these devices remains far from the sub-micrometer scale, making them susceptible to cracking under bending stress and thus precluding their use in flexible device applications. Due to its earth abundance, non-toxicity, and low elastic modulus, titanium trisulfide (TiS<sub>3</sub>) has emerged as a promising alternative for flexible device applications. Here, using excited-state density functional calculations combined with the transfer matrix approach, we perform an optical analysis and assess the efficiency of a prototype photovoltaic device based on sub-micrometer TiS<sub>3</sub> thin films. Using optical constants obtained from our first-principles calculations, we evaluate the photovoltaic response of a single-junction device in the radiative limit, finding that a 140 nm-thick active layer achieves a maximum power conversion efficiency of approximately 22%. Additionally, we investigate tandem solar cells that incorporate TiS<sub>3</sub> into perovskite thin films, and find that the lower and upper power conversion efficiencies range from approximately 18% to 33%. Overall, our results suggest great potential for using TiS<sub>3</sub> thin films as an active layer in the design of highly efficient flexible solar cells.</div></div>\",\"PeriodicalId\":429,\"journal\":{\"name\":\"Solar Energy Materials and Solar Cells\",\"volume\":\"289 \",\"pages\":\"Article 113635\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2025-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solar Energy Materials and Solar Cells\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0927024825002363\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Energy Materials and Solar Cells","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927024825002363","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Optical properties of TiS3 as a novel thin film for single-junction and tandem solar cells
Sub-micrometer thin films are promising platforms for emerging flexible photovoltaic devices. Although the current market already produces efficient solar cells, the average wafer thickness of these devices remains far from the sub-micrometer scale, making them susceptible to cracking under bending stress and thus precluding their use in flexible device applications. Due to its earth abundance, non-toxicity, and low elastic modulus, titanium trisulfide (TiS3) has emerged as a promising alternative for flexible device applications. Here, using excited-state density functional calculations combined with the transfer matrix approach, we perform an optical analysis and assess the efficiency of a prototype photovoltaic device based on sub-micrometer TiS3 thin films. Using optical constants obtained from our first-principles calculations, we evaluate the photovoltaic response of a single-junction device in the radiative limit, finding that a 140 nm-thick active layer achieves a maximum power conversion efficiency of approximately 22%. Additionally, we investigate tandem solar cells that incorporate TiS3 into perovskite thin films, and find that the lower and upper power conversion efficiencies range from approximately 18% to 33%. Overall, our results suggest great potential for using TiS3 thin films as an active layer in the design of highly efficient flexible solar cells.
期刊介绍:
Solar Energy Materials & Solar Cells is intended as a vehicle for the dissemination of research results on materials science and technology related to photovoltaic, photothermal and photoelectrochemical solar energy conversion. Materials science is taken in the broadest possible sense and encompasses physics, chemistry, optics, materials fabrication and analysis for all types of materials.