Kathleen R. Louis-Gray, Joseph A. Beatty, Charles L. Cox
{"title":"丘脑皮质神经元短期破伤风后可塑性的新机制","authors":"Kathleen R. Louis-Gray, Joseph A. Beatty, Charles L. Cox","doi":"10.1016/j.brainres.2025.149654","DOIUrl":null,"url":null,"abstract":"<div><div>Information transfer through the thalamus is a dynamic process, which can be influenced by multiple factors within the thalamocortical circuit. Activity-dependent changes in neuronal excitability and synaptic efficacy can impact both short- and long-term processing through the thalamocortical circuit. In these experiments, we investigate the mechanism of a novel form of post-tetanic synaptic plasticity, induced by tetanic stimulation of excitatory afferents onto thalamocortical neurons. We show that tetanic activation of excitatory afferents produces a short-lasting (10–15 min) facilitation of excitatory postsynaptic currents in ventrobasal thalamocortical neurons. This potentiation is mediated by a calcium-dependent, presynaptic mechanism. This potentiation is partly due to the activation of adenylyl cyclase and involves alteration in the hyperpolarization-activated mixed cation current, I<sub>h</sub>. This activity-dependent facilitation of excitatory synaptic transmission provides a mechanism through which prolonged excitatory enhancement may impact sensory processing through thalamocortical circuits.</div></div>","PeriodicalId":9083,"journal":{"name":"Brain Research","volume":"1859 ","pages":"Article 149654"},"PeriodicalIF":2.7000,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel mechanism for short-term post-tetanic plasticity in thalamocortical neurons\",\"authors\":\"Kathleen R. Louis-Gray, Joseph A. Beatty, Charles L. Cox\",\"doi\":\"10.1016/j.brainres.2025.149654\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Information transfer through the thalamus is a dynamic process, which can be influenced by multiple factors within the thalamocortical circuit. Activity-dependent changes in neuronal excitability and synaptic efficacy can impact both short- and long-term processing through the thalamocortical circuit. In these experiments, we investigate the mechanism of a novel form of post-tetanic synaptic plasticity, induced by tetanic stimulation of excitatory afferents onto thalamocortical neurons. We show that tetanic activation of excitatory afferents produces a short-lasting (10–15 min) facilitation of excitatory postsynaptic currents in ventrobasal thalamocortical neurons. This potentiation is mediated by a calcium-dependent, presynaptic mechanism. This potentiation is partly due to the activation of adenylyl cyclase and involves alteration in the hyperpolarization-activated mixed cation current, I<sub>h</sub>. This activity-dependent facilitation of excitatory synaptic transmission provides a mechanism through which prolonged excitatory enhancement may impact sensory processing through thalamocortical circuits.</div></div>\",\"PeriodicalId\":9083,\"journal\":{\"name\":\"Brain Research\",\"volume\":\"1859 \",\"pages\":\"Article 149654\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-04-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brain Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0006899325002136\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0006899325002136","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
A novel mechanism for short-term post-tetanic plasticity in thalamocortical neurons
Information transfer through the thalamus is a dynamic process, which can be influenced by multiple factors within the thalamocortical circuit. Activity-dependent changes in neuronal excitability and synaptic efficacy can impact both short- and long-term processing through the thalamocortical circuit. In these experiments, we investigate the mechanism of a novel form of post-tetanic synaptic plasticity, induced by tetanic stimulation of excitatory afferents onto thalamocortical neurons. We show that tetanic activation of excitatory afferents produces a short-lasting (10–15 min) facilitation of excitatory postsynaptic currents in ventrobasal thalamocortical neurons. This potentiation is mediated by a calcium-dependent, presynaptic mechanism. This potentiation is partly due to the activation of adenylyl cyclase and involves alteration in the hyperpolarization-activated mixed cation current, Ih. This activity-dependent facilitation of excitatory synaptic transmission provides a mechanism through which prolonged excitatory enhancement may impact sensory processing through thalamocortical circuits.
期刊介绍:
An international multidisciplinary journal devoted to fundamental research in the brain sciences.
Brain Research publishes papers reporting interdisciplinary investigations of nervous system structure and function that are of general interest to the international community of neuroscientists. As is evident from the journals name, its scope is broad, ranging from cellular and molecular studies through systems neuroscience, cognition and disease. Invited reviews are also published; suggestions for and inquiries about potential reviews are welcomed.
With the appearance of the final issue of the 2011 subscription, Vol. 67/1-2 (24 June 2011), Brain Research Reviews has ceased publication as a distinct journal separate from Brain Research. Review articles accepted for Brain Research are now published in that journal.