Christopher M. Pierce , Young-Kee Kim , Ivan Bazarov
{"title":"多目标优化的比较-关系-代理进化算法","authors":"Christopher M. Pierce , Young-Kee Kim , Ivan Bazarov","doi":"10.1016/j.swevo.2025.101947","DOIUrl":null,"url":null,"abstract":"<div><div>Evolutionary algorithms often struggle to find well converged (e.g small inverted generational distance on test problems) solutions to multi-objective optimization problems on a limited budget of function evaluations (here, a few hundred). The family of surrogate-assisted evolutionary algorithms (SAEAs) offers a potential solution to this shortcoming through the use of data driven models which augment evaluations of the objective functions. A surrogate model which has shown promise in single-objective optimization is to predict the “comparison relationship” between pairs of solutions (i.e. who’s objective function is smaller). In this paper, we investigate the performance of this model on multi-objective optimization problems. First, we propose a new algorithm “CRSEA” which uses the comparison-relationship model. Numerical experiments are then performed with the DTLZ and WFG test suites plus a real-world problem from the field of accelerator physics. We find that CRSEA finds better converged solutions than the tested SAEAs on many of the <em>medium-scale, biobjective</em> problems chosen from the WFG suite suggesting the “comparison-relationship surrogate” as a promising tool for improving the efficiency of multi-objective optimization algorithms.</div></div>","PeriodicalId":48682,"journal":{"name":"Swarm and Evolutionary Computation","volume":"95 ","pages":"Article 101947"},"PeriodicalIF":8.2000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A comparison-relationship-surrogate evolutionary algorithm for multi-objective optimization\",\"authors\":\"Christopher M. Pierce , Young-Kee Kim , Ivan Bazarov\",\"doi\":\"10.1016/j.swevo.2025.101947\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Evolutionary algorithms often struggle to find well converged (e.g small inverted generational distance on test problems) solutions to multi-objective optimization problems on a limited budget of function evaluations (here, a few hundred). The family of surrogate-assisted evolutionary algorithms (SAEAs) offers a potential solution to this shortcoming through the use of data driven models which augment evaluations of the objective functions. A surrogate model which has shown promise in single-objective optimization is to predict the “comparison relationship” between pairs of solutions (i.e. who’s objective function is smaller). In this paper, we investigate the performance of this model on multi-objective optimization problems. First, we propose a new algorithm “CRSEA” which uses the comparison-relationship model. Numerical experiments are then performed with the DTLZ and WFG test suites plus a real-world problem from the field of accelerator physics. We find that CRSEA finds better converged solutions than the tested SAEAs on many of the <em>medium-scale, biobjective</em> problems chosen from the WFG suite suggesting the “comparison-relationship surrogate” as a promising tool for improving the efficiency of multi-objective optimization algorithms.</div></div>\",\"PeriodicalId\":48682,\"journal\":{\"name\":\"Swarm and Evolutionary Computation\",\"volume\":\"95 \",\"pages\":\"Article 101947\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2025-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Swarm and Evolutionary Computation\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2210650225001051\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Swarm and Evolutionary Computation","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2210650225001051","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
A comparison-relationship-surrogate evolutionary algorithm for multi-objective optimization
Evolutionary algorithms often struggle to find well converged (e.g small inverted generational distance on test problems) solutions to multi-objective optimization problems on a limited budget of function evaluations (here, a few hundred). The family of surrogate-assisted evolutionary algorithms (SAEAs) offers a potential solution to this shortcoming through the use of data driven models which augment evaluations of the objective functions. A surrogate model which has shown promise in single-objective optimization is to predict the “comparison relationship” between pairs of solutions (i.e. who’s objective function is smaller). In this paper, we investigate the performance of this model on multi-objective optimization problems. First, we propose a new algorithm “CRSEA” which uses the comparison-relationship model. Numerical experiments are then performed with the DTLZ and WFG test suites plus a real-world problem from the field of accelerator physics. We find that CRSEA finds better converged solutions than the tested SAEAs on many of the medium-scale, biobjective problems chosen from the WFG suite suggesting the “comparison-relationship surrogate” as a promising tool for improving the efficiency of multi-objective optimization algorithms.
期刊介绍:
Swarm and Evolutionary Computation is a pioneering peer-reviewed journal focused on the latest research and advancements in nature-inspired intelligent computation using swarm and evolutionary algorithms. It covers theoretical, experimental, and practical aspects of these paradigms and their hybrids, promoting interdisciplinary research. The journal prioritizes the publication of high-quality, original articles that push the boundaries of evolutionary computation and swarm intelligence. Additionally, it welcomes survey papers on current topics and novel applications. Topics of interest include but are not limited to: Genetic Algorithms, and Genetic Programming, Evolution Strategies, and Evolutionary Programming, Differential Evolution, Artificial Immune Systems, Particle Swarms, Ant Colony, Bacterial Foraging, Artificial Bees, Fireflies Algorithm, Harmony Search, Artificial Life, Digital Organisms, Estimation of Distribution Algorithms, Stochastic Diffusion Search, Quantum Computing, Nano Computing, Membrane Computing, Human-centric Computing, Hybridization of Algorithms, Memetic Computing, Autonomic Computing, Self-organizing systems, Combinatorial, Discrete, Binary, Constrained, Multi-objective, Multi-modal, Dynamic, and Large-scale Optimization.