通过多模态图神经网络进行电子显微镜图像和光谱采样的矿物分割

IF 3.9 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Samuel Repka , Bořek Reich , Fedor Zolotarev , Tuomas Eerola , Pavel Zemčík
{"title":"通过多模态图神经网络进行电子显微镜图像和光谱采样的矿物分割","authors":"Samuel Repka ,&nbsp;Bořek Reich ,&nbsp;Fedor Zolotarev ,&nbsp;Tuomas Eerola ,&nbsp;Pavel Zemčík","doi":"10.1016/j.patrec.2025.04.012","DOIUrl":null,"url":null,"abstract":"<div><div>We propose a novel Graph Neural Network-based method for segmentation based on data fusion of multimodal Scanning Electron Microscope (SEM) images. In most cases, Backscattered Electron (BSE) images obtained using SEM do not contain sufficient information for mineral segmentation. Therefore, imaging is often complemented with point-wise Energy-Dispersive X-ray Spectroscopy (EDS) spectral measurements that provide highly accurate information about the chemical composition but that are time-consuming to acquire. This motivates the use of sparse spectral data in conjunction with BSE images for mineral segmentation. The unstructured nature of the spectral data makes most traditional image fusion techniques unsuitable for BSE-EDS fusion. We propose using graph neural networks to fuse the two modalities and segment the mineral phases simultaneously. Our results demonstrate that providing EDS data for as few as 1% of BSE pixels produces accurate segmentation, enabling rapid analysis of mineral samples. The proposed data fusion pipeline is versatile and can be adapted to other domains that involve image data and point-wise measurements.</div></div>","PeriodicalId":54638,"journal":{"name":"Pattern Recognition Letters","volume":"193 ","pages":"Pages 79-85"},"PeriodicalIF":3.9000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mineral segmentation using electron microscope images and spectral sampling through multimodal graph neural networks\",\"authors\":\"Samuel Repka ,&nbsp;Bořek Reich ,&nbsp;Fedor Zolotarev ,&nbsp;Tuomas Eerola ,&nbsp;Pavel Zemčík\",\"doi\":\"10.1016/j.patrec.2025.04.012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We propose a novel Graph Neural Network-based method for segmentation based on data fusion of multimodal Scanning Electron Microscope (SEM) images. In most cases, Backscattered Electron (BSE) images obtained using SEM do not contain sufficient information for mineral segmentation. Therefore, imaging is often complemented with point-wise Energy-Dispersive X-ray Spectroscopy (EDS) spectral measurements that provide highly accurate information about the chemical composition but that are time-consuming to acquire. This motivates the use of sparse spectral data in conjunction with BSE images for mineral segmentation. The unstructured nature of the spectral data makes most traditional image fusion techniques unsuitable for BSE-EDS fusion. We propose using graph neural networks to fuse the two modalities and segment the mineral phases simultaneously. Our results demonstrate that providing EDS data for as few as 1% of BSE pixels produces accurate segmentation, enabling rapid analysis of mineral samples. The proposed data fusion pipeline is versatile and can be adapted to other domains that involve image data and point-wise measurements.</div></div>\",\"PeriodicalId\":54638,\"journal\":{\"name\":\"Pattern Recognition Letters\",\"volume\":\"193 \",\"pages\":\"Pages 79-85\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pattern Recognition Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S016786552500145X\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pattern Recognition Letters","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016786552500145X","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种基于多模态扫描电子显微镜(SEM)图像数据融合的图像分割方法。在大多数情况下,使用扫描电镜获得的背散射电子(BSE)图像不包含足够的信息进行矿物分割。因此,成像通常与逐点能量色散x射线光谱(EDS)光谱测量相补充,该测量可提供有关化学成分的高度精确信息,但获取时间较长。这促使将稀疏光谱数据与BSE图像结合起来用于矿物分割。光谱数据的非结构化特性使得大多数传统的图像融合技术不适合BSE-EDS融合。我们建议使用图神经网络来融合两种模式并同时分割矿物相。我们的研究结果表明,仅为1%的BSE像素提供EDS数据就可以产生准确的分割,从而实现矿物样品的快速分析。所提出的数据融合管道具有通用性,可以适用于涉及图像数据和逐点测量的其他领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Mineral segmentation using electron microscope images and spectral sampling through multimodal graph neural networks

Mineral segmentation using electron microscope images and spectral sampling through multimodal graph neural networks
We propose a novel Graph Neural Network-based method for segmentation based on data fusion of multimodal Scanning Electron Microscope (SEM) images. In most cases, Backscattered Electron (BSE) images obtained using SEM do not contain sufficient information for mineral segmentation. Therefore, imaging is often complemented with point-wise Energy-Dispersive X-ray Spectroscopy (EDS) spectral measurements that provide highly accurate information about the chemical composition but that are time-consuming to acquire. This motivates the use of sparse spectral data in conjunction with BSE images for mineral segmentation. The unstructured nature of the spectral data makes most traditional image fusion techniques unsuitable for BSE-EDS fusion. We propose using graph neural networks to fuse the two modalities and segment the mineral phases simultaneously. Our results demonstrate that providing EDS data for as few as 1% of BSE pixels produces accurate segmentation, enabling rapid analysis of mineral samples. The proposed data fusion pipeline is versatile and can be adapted to other domains that involve image data and point-wise measurements.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Pattern Recognition Letters
Pattern Recognition Letters 工程技术-计算机:人工智能
CiteScore
12.40
自引率
5.90%
发文量
287
审稿时长
9.1 months
期刊介绍: Pattern Recognition Letters aims at rapid publication of concise articles of a broad interest in pattern recognition. Subject areas include all the current fields of interest represented by the Technical Committees of the International Association of Pattern Recognition, and other developing themes involving learning and recognition.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信