半硬三重态损失的Edgeworth展开

IF 0.9 4区 数学 Q3 STATISTICS & PROBABILITY
Masanari Kimura
{"title":"半硬三重态损失的Edgeworth展开","authors":"Masanari Kimura","doi":"10.1016/j.spl.2025.110441","DOIUrl":null,"url":null,"abstract":"<div><div>We develop a higher-order asymptotic analysis for the semi-hard triplet loss using the Edgeworth expansion. It is known that this loss function enforces that embeddings of similar samples are close while those of dissimilar samples are separated by a specified margin. By refining the classical central limit theorem, our approach quantifies the impact of the margin parameter and the skewness of the underlying data distribution on the loss behavior. In particular, we derive explicit Edgeworth expansions that reveal first-order corrections in terms of the third cumulant, thereby characterizing non-Gaussian effects present in the distribution of distance differences between anchor-positive and anchor-negative pairs. Our findings provide detailed insight into the sensitivity of the semi-hard triplet loss to its parameters and offer guidance for choosing the margin to ensure training stability.</div></div>","PeriodicalId":49475,"journal":{"name":"Statistics & Probability Letters","volume":"224 ","pages":"Article 110441"},"PeriodicalIF":0.9000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Edgeworth expansion for semi-hard triplet loss\",\"authors\":\"Masanari Kimura\",\"doi\":\"10.1016/j.spl.2025.110441\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We develop a higher-order asymptotic analysis for the semi-hard triplet loss using the Edgeworth expansion. It is known that this loss function enforces that embeddings of similar samples are close while those of dissimilar samples are separated by a specified margin. By refining the classical central limit theorem, our approach quantifies the impact of the margin parameter and the skewness of the underlying data distribution on the loss behavior. In particular, we derive explicit Edgeworth expansions that reveal first-order corrections in terms of the third cumulant, thereby characterizing non-Gaussian effects present in the distribution of distance differences between anchor-positive and anchor-negative pairs. Our findings provide detailed insight into the sensitivity of the semi-hard triplet loss to its parameters and offer guidance for choosing the margin to ensure training stability.</div></div>\",\"PeriodicalId\":49475,\"journal\":{\"name\":\"Statistics & Probability Letters\",\"volume\":\"224 \",\"pages\":\"Article 110441\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistics & Probability Letters\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167715225000860\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics & Probability Letters","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167715225000860","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

利用Edgeworth展开,给出了半硬三重态损失的高阶渐近分析。已知,该损失函数强制相似样本的嵌入是接近的,而不同样本的嵌入被指定的边界分开。通过改进经典的中心极限定理,我们的方法量化了边际参数和底层数据分布的偏度对损失行为的影响。特别是,我们推导出显式的Edgeworth展开式,揭示了根据第三累积量的一阶修正,从而表征了锚-正和锚-负对之间距离差异分布中存在的非高斯效应。我们的研究结果为半硬三联体损失对其参数的敏感性提供了详细的见解,并为选择裕度以确保训练稳定性提供了指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Edgeworth expansion for semi-hard triplet loss
We develop a higher-order asymptotic analysis for the semi-hard triplet loss using the Edgeworth expansion. It is known that this loss function enforces that embeddings of similar samples are close while those of dissimilar samples are separated by a specified margin. By refining the classical central limit theorem, our approach quantifies the impact of the margin parameter and the skewness of the underlying data distribution on the loss behavior. In particular, we derive explicit Edgeworth expansions that reveal first-order corrections in terms of the third cumulant, thereby characterizing non-Gaussian effects present in the distribution of distance differences between anchor-positive and anchor-negative pairs. Our findings provide detailed insight into the sensitivity of the semi-hard triplet loss to its parameters and offer guidance for choosing the margin to ensure training stability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Statistics & Probability Letters
Statistics & Probability Letters 数学-统计学与概率论
CiteScore
1.60
自引率
0.00%
发文量
173
审稿时长
6 months
期刊介绍: Statistics & Probability Letters adopts a novel and highly innovative approach to the publication of research findings in statistics and probability. It features concise articles, rapid publication and broad coverage of the statistics and probability literature. Statistics & Probability Letters is a refereed journal. Articles will be limited to six journal pages (13 double-space typed pages) including references and figures. Apart from the six-page limitation, originality, quality and clarity will be the criteria for choosing the material to be published in Statistics & Probability Letters. Every attempt will be made to provide the first review of a submitted manuscript within three months of submission. The proliferation of literature and long publication delays have made it difficult for researchers and practitioners to keep up with new developments outside of, or even within, their specialization. The aim of Statistics & Probability Letters is to help to alleviate this problem. Concise communications (letters) allow readers to quickly and easily digest large amounts of material and to stay up-to-date with developments in all areas of statistics and probability. The mainstream of Letters will focus on new statistical methods, theoretical results, and innovative applications of statistics and probability to other scientific disciplines. Key results and central ideas must be presented in a clear and concise manner. These results may be part of a larger study that the author will submit at a later time as a full length paper to SPL or to another journal. Theory and methodology may be published with proofs omitted, or only sketched, but only if sufficient support material is provided so that the findings can be verified. Empirical and computational results that are of significant value will be published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信