{"title":"轴向载荷诱导非局部应力驱动梁的振动变化","authors":"Indronil Devnath, Mohammad Nazmul Islam","doi":"10.1016/j.apples.2025.100223","DOIUrl":null,"url":null,"abstract":"<div><div>This research examines the impact of axial load on the vibrational properties of nonlocal nanobeams. The theory of stress-driven nonlocal elasticity is utilized to characterize the response of the beam, integrating the influence of axial loads as a pivotal element in modifying its dynamic behavior. The governing equations for the beam's vibration are formulated through the application of stress-driven nonlocal elasticity theory, while investigating the influence of varying axial loads on natural frequencies and mode shapes. Analytical solutions are derived, and numerical simulations are performed to corroborate theoretical predictions. The findings indicate that axial loads have a substantial impact on the vibrational response, with alterations in both the natural frequencies and the mode shapes contingent upon the magnitude and direction of the axial load. The results provide significant understanding of the dynamic behavior of beams subjected to axial loads, especially within the framework of nonlocal stress-driven systems, which may have implications for structural health monitoring, vibration control, and material design.</div></div>","PeriodicalId":72251,"journal":{"name":"Applications in engineering science","volume":"22 ","pages":"Article 100223"},"PeriodicalIF":2.2000,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Axial load induced vibrational changes in nonlocal stress-driven beams\",\"authors\":\"Indronil Devnath, Mohammad Nazmul Islam\",\"doi\":\"10.1016/j.apples.2025.100223\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This research examines the impact of axial load on the vibrational properties of nonlocal nanobeams. The theory of stress-driven nonlocal elasticity is utilized to characterize the response of the beam, integrating the influence of axial loads as a pivotal element in modifying its dynamic behavior. The governing equations for the beam's vibration are formulated through the application of stress-driven nonlocal elasticity theory, while investigating the influence of varying axial loads on natural frequencies and mode shapes. Analytical solutions are derived, and numerical simulations are performed to corroborate theoretical predictions. The findings indicate that axial loads have a substantial impact on the vibrational response, with alterations in both the natural frequencies and the mode shapes contingent upon the magnitude and direction of the axial load. The results provide significant understanding of the dynamic behavior of beams subjected to axial loads, especially within the framework of nonlocal stress-driven systems, which may have implications for structural health monitoring, vibration control, and material design.</div></div>\",\"PeriodicalId\":72251,\"journal\":{\"name\":\"Applications in engineering science\",\"volume\":\"22 \",\"pages\":\"Article 100223\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applications in engineering science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666496825000214\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applications in engineering science","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666496825000214","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Axial load induced vibrational changes in nonlocal stress-driven beams
This research examines the impact of axial load on the vibrational properties of nonlocal nanobeams. The theory of stress-driven nonlocal elasticity is utilized to characterize the response of the beam, integrating the influence of axial loads as a pivotal element in modifying its dynamic behavior. The governing equations for the beam's vibration are formulated through the application of stress-driven nonlocal elasticity theory, while investigating the influence of varying axial loads on natural frequencies and mode shapes. Analytical solutions are derived, and numerical simulations are performed to corroborate theoretical predictions. The findings indicate that axial loads have a substantial impact on the vibrational response, with alterations in both the natural frequencies and the mode shapes contingent upon the magnitude and direction of the axial load. The results provide significant understanding of the dynamic behavior of beams subjected to axial loads, especially within the framework of nonlocal stress-driven systems, which may have implications for structural health monitoring, vibration control, and material design.