Youngki Kim , Chanho Chu , Taeyoung Beom , Sihyung Park , Bonhyo Gu , Seonyeob Kim , Sangwon Kim , Dong Kyu Kim
{"title":"电化学压缩机利用水-氢热泵系统的可行性研究","authors":"Youngki Kim , Chanho Chu , Taeyoung Beom , Sihyung Park , Bonhyo Gu , Seonyeob Kim , Sangwon Kim , Dong Kyu Kim","doi":"10.1016/j.enconman.2025.119832","DOIUrl":null,"url":null,"abstract":"<div><div>Heat pump systems offer significant potential for achieving high efficiency and have gained attention as an environmentally friendly technology. However, traditional compressors used in heat pumps face issues such as low efficiency, noise, and oil contamination. Electrochemical compressors offer a promising alternative to address these challenges, but research on heat pump systems utilizing electrochemical compressors remains limited. A high-pressure electrochemical compressor is designed, and both experimental and numerical analyses are conducted to analyze the operational characteristics under varying conditions. The results show that increasing power consumption leads to a higher mass flux of refrigerant, driven primarily by electro-osmotic drag. Additionally, increasing the mixing ratio from 24% to 30% results in a threefold increase in mass flux, attributed to enhanced membrane conductivity. Higher operating temperatures also significantly improve mass flux by reducing back diffusion. A performance map is developed to analyze the comprehensive performance characteristics of an electrochemical compressor. The analysis reveals that the efficiency of the compressor exceeds 50% at pressure ratios below 3, with particularly high efficiency observed in regions of low mass flux. These findings demonstrate the potential of electrochemical compressors to be used in heat pump system to improve the overall efficiency.</div></div>","PeriodicalId":11664,"journal":{"name":"Energy Conversion and Management","volume":"334 ","pages":"Article 119832"},"PeriodicalIF":9.9000,"publicationDate":"2025-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Feasibility study on electrochemical compressor utilizing water-hydrogen heat pump system\",\"authors\":\"Youngki Kim , Chanho Chu , Taeyoung Beom , Sihyung Park , Bonhyo Gu , Seonyeob Kim , Sangwon Kim , Dong Kyu Kim\",\"doi\":\"10.1016/j.enconman.2025.119832\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Heat pump systems offer significant potential for achieving high efficiency and have gained attention as an environmentally friendly technology. However, traditional compressors used in heat pumps face issues such as low efficiency, noise, and oil contamination. Electrochemical compressors offer a promising alternative to address these challenges, but research on heat pump systems utilizing electrochemical compressors remains limited. A high-pressure electrochemical compressor is designed, and both experimental and numerical analyses are conducted to analyze the operational characteristics under varying conditions. The results show that increasing power consumption leads to a higher mass flux of refrigerant, driven primarily by electro-osmotic drag. Additionally, increasing the mixing ratio from 24% to 30% results in a threefold increase in mass flux, attributed to enhanced membrane conductivity. Higher operating temperatures also significantly improve mass flux by reducing back diffusion. A performance map is developed to analyze the comprehensive performance characteristics of an electrochemical compressor. The analysis reveals that the efficiency of the compressor exceeds 50% at pressure ratios below 3, with particularly high efficiency observed in regions of low mass flux. These findings demonstrate the potential of electrochemical compressors to be used in heat pump system to improve the overall efficiency.</div></div>\",\"PeriodicalId\":11664,\"journal\":{\"name\":\"Energy Conversion and Management\",\"volume\":\"334 \",\"pages\":\"Article 119832\"},\"PeriodicalIF\":9.9000,\"publicationDate\":\"2025-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy Conversion and Management\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0196890425003553\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Conversion and Management","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0196890425003553","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Feasibility study on electrochemical compressor utilizing water-hydrogen heat pump system
Heat pump systems offer significant potential for achieving high efficiency and have gained attention as an environmentally friendly technology. However, traditional compressors used in heat pumps face issues such as low efficiency, noise, and oil contamination. Electrochemical compressors offer a promising alternative to address these challenges, but research on heat pump systems utilizing electrochemical compressors remains limited. A high-pressure electrochemical compressor is designed, and both experimental and numerical analyses are conducted to analyze the operational characteristics under varying conditions. The results show that increasing power consumption leads to a higher mass flux of refrigerant, driven primarily by electro-osmotic drag. Additionally, increasing the mixing ratio from 24% to 30% results in a threefold increase in mass flux, attributed to enhanced membrane conductivity. Higher operating temperatures also significantly improve mass flux by reducing back diffusion. A performance map is developed to analyze the comprehensive performance characteristics of an electrochemical compressor. The analysis reveals that the efficiency of the compressor exceeds 50% at pressure ratios below 3, with particularly high efficiency observed in regions of low mass flux. These findings demonstrate the potential of electrochemical compressors to be used in heat pump system to improve the overall efficiency.
期刊介绍:
The journal Energy Conversion and Management provides a forum for publishing original contributions and comprehensive technical review articles of interdisciplinary and original research on all important energy topics.
The topics considered include energy generation, utilization, conversion, storage, transmission, conservation, management and sustainability. These topics typically involve various types of energy such as mechanical, thermal, nuclear, chemical, electromagnetic, magnetic and electric. These energy types cover all known energy resources, including renewable resources (e.g., solar, bio, hydro, wind, geothermal and ocean energy), fossil fuels and nuclear resources.