Siyuan Long , Pengxin Yu , Jianrong Huang , Conghao Ku , Xinge Miao , Junjie Lan , Hao Fu , Chunbao Charles Xu , Haiwei Jiang , Zhengli Liu , Weiran Yang
{"title":"富木质纤维素畜禽粪便的顺序水热液化:提高低酚生物原油产量和质量的新途径","authors":"Siyuan Long , Pengxin Yu , Jianrong Huang , Conghao Ku , Xinge Miao , Junjie Lan , Hao Fu , Chunbao Charles Xu , Haiwei Jiang , Zhengli Liu , Weiran Yang","doi":"10.1016/j.biortech.2025.132556","DOIUrl":null,"url":null,"abstract":"<div><div>The treatment and valorization of bulk livestock manure rich in lignocellulose demand efficient processing techniques. Hydrothermal liquefaction (HTL) has emerged as a promising approach for waste-to-energy conversion, effectively transforming lignocellulosic biomass into renewable biocrude. However, the advances in the utilization of HTL-derived biocrude have been hindered by its poor oil quality due to several factors including high phenolic compound content. This study focuses on enhancing the production and quality of low-phenolic biocrude via a sequential HTL process. The results revealed that sequential HTL achieved a high biocrude yield of 59.9%, with a concurrent reduction in phenolic content to 4.2%. This represents an 84.2% decrease in phenolic content compared to biocrude derived from direct HTL (280 ℃), achieving a tradeoff between biocrude yield and quality. Notably, GC–MS revealed that the biocrude produced through sequential HTL was enriched with fatty acids and esters accounting for 80.5%, contributing to the production of hydrocarbon fuels. Additionally, FT-ICR MS revealed that sequential HTL enhanced the biocrude quality and encouraged the production of light fuels. The petroleum fractionation analysis further revealed that sequential HTL-derived biocrude was more desirable in the downstream petroleum refining industry. The model compounds experiments revealed that phenols were likely to to be transferred to the oil phase at relatively high temperatures. Overall, it is the first study to elucidate the phenols removal mechanism and quality improvement of biocrude through the sequential HTL, demonstrating its potential for sustainable disposal and valorization of waste lignocellulosic biomass, and contributing to the development of renewable energy.</div></div>","PeriodicalId":258,"journal":{"name":"Bioresource Technology","volume":"430 ","pages":"Article 132556"},"PeriodicalIF":9.7000,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sequential hydrothermal liquefaction of lignocellulose-rich livestock manure: A new perspective on enhancing the production and quality of low-phenolic biocrude\",\"authors\":\"Siyuan Long , Pengxin Yu , Jianrong Huang , Conghao Ku , Xinge Miao , Junjie Lan , Hao Fu , Chunbao Charles Xu , Haiwei Jiang , Zhengli Liu , Weiran Yang\",\"doi\":\"10.1016/j.biortech.2025.132556\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The treatment and valorization of bulk livestock manure rich in lignocellulose demand efficient processing techniques. Hydrothermal liquefaction (HTL) has emerged as a promising approach for waste-to-energy conversion, effectively transforming lignocellulosic biomass into renewable biocrude. However, the advances in the utilization of HTL-derived biocrude have been hindered by its poor oil quality due to several factors including high phenolic compound content. This study focuses on enhancing the production and quality of low-phenolic biocrude via a sequential HTL process. The results revealed that sequential HTL achieved a high biocrude yield of 59.9%, with a concurrent reduction in phenolic content to 4.2%. This represents an 84.2% decrease in phenolic content compared to biocrude derived from direct HTL (280 ℃), achieving a tradeoff between biocrude yield and quality. Notably, GC–MS revealed that the biocrude produced through sequential HTL was enriched with fatty acids and esters accounting for 80.5%, contributing to the production of hydrocarbon fuels. Additionally, FT-ICR MS revealed that sequential HTL enhanced the biocrude quality and encouraged the production of light fuels. The petroleum fractionation analysis further revealed that sequential HTL-derived biocrude was more desirable in the downstream petroleum refining industry. The model compounds experiments revealed that phenols were likely to to be transferred to the oil phase at relatively high temperatures. Overall, it is the first study to elucidate the phenols removal mechanism and quality improvement of biocrude through the sequential HTL, demonstrating its potential for sustainable disposal and valorization of waste lignocellulosic biomass, and contributing to the development of renewable energy.</div></div>\",\"PeriodicalId\":258,\"journal\":{\"name\":\"Bioresource Technology\",\"volume\":\"430 \",\"pages\":\"Article 132556\"},\"PeriodicalIF\":9.7000,\"publicationDate\":\"2025-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioresource Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S096085242500522X\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioresource Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S096085242500522X","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
Sequential hydrothermal liquefaction of lignocellulose-rich livestock manure: A new perspective on enhancing the production and quality of low-phenolic biocrude
The treatment and valorization of bulk livestock manure rich in lignocellulose demand efficient processing techniques. Hydrothermal liquefaction (HTL) has emerged as a promising approach for waste-to-energy conversion, effectively transforming lignocellulosic biomass into renewable biocrude. However, the advances in the utilization of HTL-derived biocrude have been hindered by its poor oil quality due to several factors including high phenolic compound content. This study focuses on enhancing the production and quality of low-phenolic biocrude via a sequential HTL process. The results revealed that sequential HTL achieved a high biocrude yield of 59.9%, with a concurrent reduction in phenolic content to 4.2%. This represents an 84.2% decrease in phenolic content compared to biocrude derived from direct HTL (280 ℃), achieving a tradeoff between biocrude yield and quality. Notably, GC–MS revealed that the biocrude produced through sequential HTL was enriched with fatty acids and esters accounting for 80.5%, contributing to the production of hydrocarbon fuels. Additionally, FT-ICR MS revealed that sequential HTL enhanced the biocrude quality and encouraged the production of light fuels. The petroleum fractionation analysis further revealed that sequential HTL-derived biocrude was more desirable in the downstream petroleum refining industry. The model compounds experiments revealed that phenols were likely to to be transferred to the oil phase at relatively high temperatures. Overall, it is the first study to elucidate the phenols removal mechanism and quality improvement of biocrude through the sequential HTL, demonstrating its potential for sustainable disposal and valorization of waste lignocellulosic biomass, and contributing to the development of renewable energy.
期刊介绍:
Bioresource Technology publishes original articles, review articles, case studies, and short communications covering the fundamentals, applications, and management of bioresource technology. The journal seeks to advance and disseminate knowledge across various areas related to biomass, biological waste treatment, bioenergy, biotransformations, bioresource systems analysis, and associated conversion or production technologies.
Topics include:
• Biofuels: liquid and gaseous biofuels production, modeling and economics
• Bioprocesses and bioproducts: biocatalysis and fermentations
• Biomass and feedstocks utilization: bioconversion of agro-industrial residues
• Environmental protection: biological waste treatment
• Thermochemical conversion of biomass: combustion, pyrolysis, gasification, catalysis.