三元纳米流体双相变材料光伏热系统性能分析

IF 6.4 2区 工程技术 Q1 THERMODYNAMICS
Lin Yuanjian , Abid A. Memon , Hou Enran , Mohamed R. Ali , Amsalu Fenta
{"title":"三元纳米流体双相变材料光伏热系统性能分析","authors":"Lin Yuanjian ,&nbsp;Abid A. Memon ,&nbsp;Hou Enran ,&nbsp;Mohamed R. Ali ,&nbsp;Amsalu Fenta","doi":"10.1016/j.csite.2025.106123","DOIUrl":null,"url":null,"abstract":"<div><div>Photovoltaic-thermal (PV/T) systems offer a sustainable solution for electricity generation and energy conservation in developing countries. However, high operating temperatures can significantly reduce their efficiency. This study investigates the thermal performance of a PV/T system incorporating a cooling flow channel to regulate temperature and enhance electrical output while utilizing excess heat for practical applications. The system comprises glass, polycrystalline silicon, an absorber, and a flow channel employing ternary and water-based nanofluids. Two phase change materials (PCMs), paraffin octadecane wax (C<sub>18</sub>H<sub>38</sub>) and sodium sulfate decahydrate (Na<sub>2</sub>SO<sub>4</sub>·10H<sub>2</sub>O), are embedded in the channel to enhance thermal regulation. Numerical simulations are conducted using COMSOL Multiphysics 6.0, employing a conjugate heat transfer approach to solve the continuity, momentum, and energy equations. The study considers steady, laminar, and Newtonian flow conditions and evaluates system performance under varying heat flux levels. Key parameters include Reynolds number (50–200), nanoparticle volume fraction (1 %–15 %), latent heat of melting (240–260 J/g), and ambient temperatures in Sukkur, Pakistan. Results indicate that paraffin wax undergoes phase transitions more rapidly than sodium sulfate decahydrate, whereas Na<sub>2</sub>SO<sub>4</sub>·10H<sub>2</sub>O exhibits greater temperature variations due to higher inlet temperatures. Optimal thermal efficiency of 75.91 % is achieved at Re = 50, T<sub>amb</sub> = 45 °C, and <span><math><mrow><mi>ϕ</mi></mrow></math></span> = 10 %.</div></div>","PeriodicalId":9658,"journal":{"name":"Case Studies in Thermal Engineering","volume":"71 ","pages":"Article 106123"},"PeriodicalIF":6.4000,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Performance analysis of a photovoltaic thermal system with ternary nanofluids cooling and dual phase change materials\",\"authors\":\"Lin Yuanjian ,&nbsp;Abid A. Memon ,&nbsp;Hou Enran ,&nbsp;Mohamed R. Ali ,&nbsp;Amsalu Fenta\",\"doi\":\"10.1016/j.csite.2025.106123\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Photovoltaic-thermal (PV/T) systems offer a sustainable solution for electricity generation and energy conservation in developing countries. However, high operating temperatures can significantly reduce their efficiency. This study investigates the thermal performance of a PV/T system incorporating a cooling flow channel to regulate temperature and enhance electrical output while utilizing excess heat for practical applications. The system comprises glass, polycrystalline silicon, an absorber, and a flow channel employing ternary and water-based nanofluids. Two phase change materials (PCMs), paraffin octadecane wax (C<sub>18</sub>H<sub>38</sub>) and sodium sulfate decahydrate (Na<sub>2</sub>SO<sub>4</sub>·10H<sub>2</sub>O), are embedded in the channel to enhance thermal regulation. Numerical simulations are conducted using COMSOL Multiphysics 6.0, employing a conjugate heat transfer approach to solve the continuity, momentum, and energy equations. The study considers steady, laminar, and Newtonian flow conditions and evaluates system performance under varying heat flux levels. Key parameters include Reynolds number (50–200), nanoparticle volume fraction (1 %–15 %), latent heat of melting (240–260 J/g), and ambient temperatures in Sukkur, Pakistan. Results indicate that paraffin wax undergoes phase transitions more rapidly than sodium sulfate decahydrate, whereas Na<sub>2</sub>SO<sub>4</sub>·10H<sub>2</sub>O exhibits greater temperature variations due to higher inlet temperatures. Optimal thermal efficiency of 75.91 % is achieved at Re = 50, T<sub>amb</sub> = 45 °C, and <span><math><mrow><mi>ϕ</mi></mrow></math></span> = 10 %.</div></div>\",\"PeriodicalId\":9658,\"journal\":{\"name\":\"Case Studies in Thermal Engineering\",\"volume\":\"71 \",\"pages\":\"Article 106123\"},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2025-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Case Studies in Thermal Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214157X25003831\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"THERMODYNAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Case Studies in Thermal Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214157X25003831","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
引用次数: 0

摘要

光伏-热(PV/T)系统为发展中国家的发电和节能提供了可持续的解决方案。然而,高工作温度会显著降低它们的效率。本研究探讨了PV/T系统的热性能,该系统采用冷却通道来调节温度并提高电输出,同时利用多余的热量进行实际应用。该系统包括玻璃、多晶硅、吸收剂和采用三元和水基纳米流体的流道。将石蜡十八烷蜡(C18H38)和十水硫酸钠(Na2SO4·10H2O)两种相变材料(PCMs)嵌入通道中,以增强热调节。利用COMSOL Multiphysics 6.0进行数值模拟,采用共轭传热方法求解连续性、动量和能量方程。该研究考虑了稳定、层流和牛顿流条件,并评估了不同热通量水平下的系统性能。关键参数包括雷诺数(50-200)、纳米颗粒体积分数(1% - 15%)、熔化潜热(240-260 J/g)和巴基斯坦苏库尔的环境温度。结果表明,石蜡的相变比十水硫酸钠更快,而Na2SO4·10H2O由于入口温度较高,其温度变化更大。在Re = 50, Tamb = 45°C, ϕ = 10%时,热效率达到75.91%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Performance analysis of a photovoltaic thermal system with ternary nanofluids cooling and dual phase change materials
Photovoltaic-thermal (PV/T) systems offer a sustainable solution for electricity generation and energy conservation in developing countries. However, high operating temperatures can significantly reduce their efficiency. This study investigates the thermal performance of a PV/T system incorporating a cooling flow channel to regulate temperature and enhance electrical output while utilizing excess heat for practical applications. The system comprises glass, polycrystalline silicon, an absorber, and a flow channel employing ternary and water-based nanofluids. Two phase change materials (PCMs), paraffin octadecane wax (C18H38) and sodium sulfate decahydrate (Na2SO4·10H2O), are embedded in the channel to enhance thermal regulation. Numerical simulations are conducted using COMSOL Multiphysics 6.0, employing a conjugate heat transfer approach to solve the continuity, momentum, and energy equations. The study considers steady, laminar, and Newtonian flow conditions and evaluates system performance under varying heat flux levels. Key parameters include Reynolds number (50–200), nanoparticle volume fraction (1 %–15 %), latent heat of melting (240–260 J/g), and ambient temperatures in Sukkur, Pakistan. Results indicate that paraffin wax undergoes phase transitions more rapidly than sodium sulfate decahydrate, whereas Na2SO4·10H2O exhibits greater temperature variations due to higher inlet temperatures. Optimal thermal efficiency of 75.91 % is achieved at Re = 50, Tamb = 45 °C, and ϕ = 10 %.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Case Studies in Thermal Engineering
Case Studies in Thermal Engineering Chemical Engineering-Fluid Flow and Transfer Processes
CiteScore
8.60
自引率
11.80%
发文量
812
审稿时长
76 days
期刊介绍: Case Studies in Thermal Engineering provides a forum for the rapid publication of short, structured Case Studies in Thermal Engineering and related Short Communications. It provides an essential compendium of case studies for researchers and practitioners in the field of thermal engineering and others who are interested in aspects of thermal engineering cases that could affect other engineering processes. The journal not only publishes new and novel case studies, but also provides a forum for the publication of high quality descriptions of classic thermal engineering problems. The scope of the journal includes case studies of thermal engineering problems in components, devices and systems using existing experimental and numerical techniques in the areas of mechanical, aerospace, chemical, medical, thermal management for electronics, heat exchangers, regeneration, solar thermal energy, thermal storage, building energy conservation, and power generation. Case studies of thermal problems in other areas will also be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信