Ju-Hong Yang , Keum-Yong Seong , Mingi Kang , Sangsoo Jang , Seung Yun Yang , Young Ki Hahn
{"title":"湍流增强微针免疫分析平台(TMIP)用于皮肤间质液的高精度生物标志物检测","authors":"Ju-Hong Yang , Keum-Yong Seong , Mingi Kang , Sangsoo Jang , Seung Yun Yang , Young Ki Hahn","doi":"10.1016/j.bios.2025.117480","DOIUrl":null,"url":null,"abstract":"<div><div>Conventional diagnostic methods for biomarker detection often require invasive procedures and exhibit limited reproducibility and sensitivity. In this study, the turbulence-enhanced microneedle immunoassay platform (TMIP) was designed to enhance the performance and accuracy of biomarker detection in skin interstitial fluid (ISF). TMIP combines a bullet-shaped microneedle (MN) array for minimally invasive biomarker capture, a microfluidic device for MN-mediated immunoassay process simplification, and a star-shaped magnetic stirrer tool (MST) to facilitate efficient washing. By targeting S100 calcium-binding protein B (S100B), a diagnostic biomarker for melanoma, TMIP demonstrated substantial improvements in reproducibility, reducing signal deviations by up to 55 % compared to manual operation. The application of nanoporous MNs (NPMNs) achieved a low detection limit of 20 pg/mL with a high linearity (R<sup>2</sup> = 0.9758). Validation using a gelatin phantom mimicking human skin confirmed TMIP's ability to achieve improved reproducibility and sensitivity. Furthermore, TMIP successfully detected S100B with high reproducibility in both the phantom (R<sup>2</sup> = 0.97523) and melanoma-expressing mice within a rapid incubation time of 1 min. TMIP enables the detection of biomarkers with remarkable reproducibility and sub-nanogram sensitivity by simplifying the analysis process and enhancing reagent washing through turbulence. These features suggest that TMIP has the potential to serve as an efficient and reliable tool for biomarker detection in skin ISF.</div></div>","PeriodicalId":259,"journal":{"name":"Biosensors and Bioelectronics","volume":"282 ","pages":"Article 117480"},"PeriodicalIF":10.7000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Turbulence-enhanced microneedle immunoassay platform (TMIP) for high-precision biomarker detection from skin interstitial fluid\",\"authors\":\"Ju-Hong Yang , Keum-Yong Seong , Mingi Kang , Sangsoo Jang , Seung Yun Yang , Young Ki Hahn\",\"doi\":\"10.1016/j.bios.2025.117480\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Conventional diagnostic methods for biomarker detection often require invasive procedures and exhibit limited reproducibility and sensitivity. In this study, the turbulence-enhanced microneedle immunoassay platform (TMIP) was designed to enhance the performance and accuracy of biomarker detection in skin interstitial fluid (ISF). TMIP combines a bullet-shaped microneedle (MN) array for minimally invasive biomarker capture, a microfluidic device for MN-mediated immunoassay process simplification, and a star-shaped magnetic stirrer tool (MST) to facilitate efficient washing. By targeting S100 calcium-binding protein B (S100B), a diagnostic biomarker for melanoma, TMIP demonstrated substantial improvements in reproducibility, reducing signal deviations by up to 55 % compared to manual operation. The application of nanoporous MNs (NPMNs) achieved a low detection limit of 20 pg/mL with a high linearity (R<sup>2</sup> = 0.9758). Validation using a gelatin phantom mimicking human skin confirmed TMIP's ability to achieve improved reproducibility and sensitivity. Furthermore, TMIP successfully detected S100B with high reproducibility in both the phantom (R<sup>2</sup> = 0.97523) and melanoma-expressing mice within a rapid incubation time of 1 min. TMIP enables the detection of biomarkers with remarkable reproducibility and sub-nanogram sensitivity by simplifying the analysis process and enhancing reagent washing through turbulence. These features suggest that TMIP has the potential to serve as an efficient and reliable tool for biomarker detection in skin ISF.</div></div>\",\"PeriodicalId\":259,\"journal\":{\"name\":\"Biosensors and Bioelectronics\",\"volume\":\"282 \",\"pages\":\"Article 117480\"},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2025-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biosensors and Bioelectronics\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0956566325003549\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosensors and Bioelectronics","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0956566325003549","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOPHYSICS","Score":null,"Total":0}
Turbulence-enhanced microneedle immunoassay platform (TMIP) for high-precision biomarker detection from skin interstitial fluid
Conventional diagnostic methods for biomarker detection often require invasive procedures and exhibit limited reproducibility and sensitivity. In this study, the turbulence-enhanced microneedle immunoassay platform (TMIP) was designed to enhance the performance and accuracy of biomarker detection in skin interstitial fluid (ISF). TMIP combines a bullet-shaped microneedle (MN) array for minimally invasive biomarker capture, a microfluidic device for MN-mediated immunoassay process simplification, and a star-shaped magnetic stirrer tool (MST) to facilitate efficient washing. By targeting S100 calcium-binding protein B (S100B), a diagnostic biomarker for melanoma, TMIP demonstrated substantial improvements in reproducibility, reducing signal deviations by up to 55 % compared to manual operation. The application of nanoporous MNs (NPMNs) achieved a low detection limit of 20 pg/mL with a high linearity (R2 = 0.9758). Validation using a gelatin phantom mimicking human skin confirmed TMIP's ability to achieve improved reproducibility and sensitivity. Furthermore, TMIP successfully detected S100B with high reproducibility in both the phantom (R2 = 0.97523) and melanoma-expressing mice within a rapid incubation time of 1 min. TMIP enables the detection of biomarkers with remarkable reproducibility and sub-nanogram sensitivity by simplifying the analysis process and enhancing reagent washing through turbulence. These features suggest that TMIP has the potential to serve as an efficient and reliable tool for biomarker detection in skin ISF.
期刊介绍:
Biosensors & Bioelectronics, along with its open access companion journal Biosensors & Bioelectronics: X, is the leading international publication in the field of biosensors and bioelectronics. It covers research, design, development, and application of biosensors, which are analytical devices incorporating biological materials with physicochemical transducers. These devices, including sensors, DNA chips, electronic noses, and lab-on-a-chip, produce digital signals proportional to specific analytes. Examples include immunosensors and enzyme-based biosensors, applied in various fields such as medicine, environmental monitoring, and food industry. The journal also focuses on molecular and supramolecular structures for enhancing device performance.