高熵尖晶石氧化物作为高效ORR催化剂对锌-空气电池动力学的增强

IF 8.9 2区 工程技术 Q1 ENERGY & FUELS
Wolong Li , Yong Wang , Na Xu , Yongcun Li
{"title":"高熵尖晶石氧化物作为高效ORR催化剂对锌-空气电池动力学的增强","authors":"Wolong Li ,&nbsp;Yong Wang ,&nbsp;Na Xu ,&nbsp;Yongcun Li","doi":"10.1016/j.est.2025.116784","DOIUrl":null,"url":null,"abstract":"<div><div>Efficient oxygen electrocatalysts for the oxygen reduction reaction (ORR) are vital for energy conversion and storage devices, but slow kinetics remain a significant challenge. There is an urgent need to develop a new electrocatalyst with high active sites. Here, we report the synthesis of high-entropy spinel oxide ((FeMnNiCuCr)<sub>3</sub>O<sub>4</sub>) loaded onto reduced graphene oxide (rGO) via a co-precipitation hydrothermal method. The multi-elemental mechanism of high-entropy spinel oxide and the role of rGO in enhancing catalytic activity are elucidated. The prepared electrocatalyst demonstrates efficient ORR catalytic performance (E<sub>1/2</sub> = 0.83 V) and reaction kinetics (100.2 mV dec<sup>-1</sup>). It exhibits excellent catalytic activity in a liquid zinc-air battery (ZAB) with a low gap voltage (∼0.75 V) and long cycle stability (1162 h). This catalytic performance can be attributed to the cooperative mechanism of high-entropy-driven polymetallic elements, wherein Cr<sup>3+</sup> regulates the electronic structure of Fe<sup>2+</sup> at the tetrahedral site, serving as the primary ORR active site, while rGO facilitates electron transfer, thereby enhancing ORR catalytic activity. This study presents a feasible approach to improving the slow ORR kinetics in ZABs using a high-entropy strategy.</div></div>","PeriodicalId":15942,"journal":{"name":"Journal of energy storage","volume":"123 ","pages":"Article 116784"},"PeriodicalIF":8.9000,"publicationDate":"2025-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-entropy spinel oxides as efficient ORR catalysts towards enhanced kinetics for zinc-air batteries\",\"authors\":\"Wolong Li ,&nbsp;Yong Wang ,&nbsp;Na Xu ,&nbsp;Yongcun Li\",\"doi\":\"10.1016/j.est.2025.116784\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Efficient oxygen electrocatalysts for the oxygen reduction reaction (ORR) are vital for energy conversion and storage devices, but slow kinetics remain a significant challenge. There is an urgent need to develop a new electrocatalyst with high active sites. Here, we report the synthesis of high-entropy spinel oxide ((FeMnNiCuCr)<sub>3</sub>O<sub>4</sub>) loaded onto reduced graphene oxide (rGO) via a co-precipitation hydrothermal method. The multi-elemental mechanism of high-entropy spinel oxide and the role of rGO in enhancing catalytic activity are elucidated. The prepared electrocatalyst demonstrates efficient ORR catalytic performance (E<sub>1/2</sub> = 0.83 V) and reaction kinetics (100.2 mV dec<sup>-1</sup>). It exhibits excellent catalytic activity in a liquid zinc-air battery (ZAB) with a low gap voltage (∼0.75 V) and long cycle stability (1162 h). This catalytic performance can be attributed to the cooperative mechanism of high-entropy-driven polymetallic elements, wherein Cr<sup>3+</sup> regulates the electronic structure of Fe<sup>2+</sup> at the tetrahedral site, serving as the primary ORR active site, while rGO facilitates electron transfer, thereby enhancing ORR catalytic activity. This study presents a feasible approach to improving the slow ORR kinetics in ZABs using a high-entropy strategy.</div></div>\",\"PeriodicalId\":15942,\"journal\":{\"name\":\"Journal of energy storage\",\"volume\":\"123 \",\"pages\":\"Article 116784\"},\"PeriodicalIF\":8.9000,\"publicationDate\":\"2025-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of energy storage\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352152X25014975\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of energy storage","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352152X25014975","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

用于氧还原反应(ORR)的高效氧电催化剂对于能量转换和存储装置至关重要,但慢动力学仍然是一个重大挑战。目前迫切需要开发一种具有高活性位点的新型电催化剂。在这里,我们报告了通过共沉淀法水热法合成高熵尖晶石氧化物((FeMnNiCuCr)3O4)负载在还原氧化石墨烯(rGO)上。阐述了高熵氧化尖晶石的多元素反应机理及氧化石墨烯增强催化活性的作用。所制备的电催化剂具有良好的ORR催化性能(E1/2 = 0.83 V)和反应动力学(100.2 mV dec1)。它在低间隙电压(~ 0.75 V)和长循环稳定性(1162 h)的液态锌-空气电池(ZAB)中表现出优异的催化活性。这种催化性能可归因于高熵驱动的多金属元素的协同机制,其中Cr3+调节四面体位点上Fe2+的电子结构,作为ORR的主要活性位点,而rGO促进电子转移,从而提高ORR的催化活性。本研究提出了一种利用高熵策略改善ZABs慢速ORR动力学的可行方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

High-entropy spinel oxides as efficient ORR catalysts towards enhanced kinetics for zinc-air batteries

High-entropy spinel oxides as efficient ORR catalysts towards enhanced kinetics for zinc-air batteries
Efficient oxygen electrocatalysts for the oxygen reduction reaction (ORR) are vital for energy conversion and storage devices, but slow kinetics remain a significant challenge. There is an urgent need to develop a new electrocatalyst with high active sites. Here, we report the synthesis of high-entropy spinel oxide ((FeMnNiCuCr)3O4) loaded onto reduced graphene oxide (rGO) via a co-precipitation hydrothermal method. The multi-elemental mechanism of high-entropy spinel oxide and the role of rGO in enhancing catalytic activity are elucidated. The prepared electrocatalyst demonstrates efficient ORR catalytic performance (E1/2 = 0.83 V) and reaction kinetics (100.2 mV dec-1). It exhibits excellent catalytic activity in a liquid zinc-air battery (ZAB) with a low gap voltage (∼0.75 V) and long cycle stability (1162 h). This catalytic performance can be attributed to the cooperative mechanism of high-entropy-driven polymetallic elements, wherein Cr3+ regulates the electronic structure of Fe2+ at the tetrahedral site, serving as the primary ORR active site, while rGO facilitates electron transfer, thereby enhancing ORR catalytic activity. This study presents a feasible approach to improving the slow ORR kinetics in ZABs using a high-entropy strategy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of energy storage
Journal of energy storage Energy-Renewable Energy, Sustainability and the Environment
CiteScore
11.80
自引率
24.50%
发文量
2262
审稿时长
69 days
期刊介绍: Journal of energy storage focusses on all aspects of energy storage, in particular systems integration, electric grid integration, modelling and analysis, novel energy storage technologies, sizing and management strategies, business models for operation of storage systems and energy storage developments worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信