{"title":"软岩蠕变收敛下隧道衬砌回弹性分析:表征及现场应用","authors":"Xiaoyun Shu , Weizhong Chen , Hongming Tian , Zhende Zhu , Jingqiang Yuan , Jianxin Yu","doi":"10.1016/j.tust.2025.106691","DOIUrl":null,"url":null,"abstract":"<div><div>Assessment of tunnel lining resilience is critical to ensure long-term structural stability under soft rock excavation. In this paper, a novel analytical approach is proposed to assess its performance, considering the time-dependent properties of tunnel deformation. Based on the complex stress behavior of lining, the ratio of compressive and tensile stress to its strength is selected as a performance indicator (<em>Q</em>) of resilience. A new resilience metric (Re) is defined to explore the non-uniform stress behavior of the lining. This metric is calculated as the ratio of the integral of disturbed <em>Q</em> to that of undisturbed <em>Q</em> by incorporating the spatial parameters of the lining. Subsequently, the rationality and applicability of the proposed method are validated through a case study involving a diversion tunnel exhibiting time-dependent deformation behavior. The parameters of compressible layer support are optimized based on Re. The results indicate that the lining Re decreases substantially (Re < 0.6) within three years and stabilizes at 0.34 after 50 years. The analysis of lining <em>Q</em> behavior reveals that the arch foot and invert experience more substantial reductions in <em>Q</em> during operation. The incorporation of compressible layers as support enhances the sustained resilience of the lining once a critical threshold is reached, maintaining Re at an approximately constant level over time. This improvement depends on the energy absorption capacity and utilization efficiency of compressible layers.</div></div>","PeriodicalId":49414,"journal":{"name":"Tunnelling and Underground Space Technology","volume":"163 ","pages":"Article 106691"},"PeriodicalIF":6.7000,"publicationDate":"2025-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Resilience analysis of tunnel lining under creep-induced convergence of soft rock: Characterization and field application\",\"authors\":\"Xiaoyun Shu , Weizhong Chen , Hongming Tian , Zhende Zhu , Jingqiang Yuan , Jianxin Yu\",\"doi\":\"10.1016/j.tust.2025.106691\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Assessment of tunnel lining resilience is critical to ensure long-term structural stability under soft rock excavation. In this paper, a novel analytical approach is proposed to assess its performance, considering the time-dependent properties of tunnel deformation. Based on the complex stress behavior of lining, the ratio of compressive and tensile stress to its strength is selected as a performance indicator (<em>Q</em>) of resilience. A new resilience metric (Re) is defined to explore the non-uniform stress behavior of the lining. This metric is calculated as the ratio of the integral of disturbed <em>Q</em> to that of undisturbed <em>Q</em> by incorporating the spatial parameters of the lining. Subsequently, the rationality and applicability of the proposed method are validated through a case study involving a diversion tunnel exhibiting time-dependent deformation behavior. The parameters of compressible layer support are optimized based on Re. The results indicate that the lining Re decreases substantially (Re < 0.6) within three years and stabilizes at 0.34 after 50 years. The analysis of lining <em>Q</em> behavior reveals that the arch foot and invert experience more substantial reductions in <em>Q</em> during operation. The incorporation of compressible layers as support enhances the sustained resilience of the lining once a critical threshold is reached, maintaining Re at an approximately constant level over time. This improvement depends on the energy absorption capacity and utilization efficiency of compressible layers.</div></div>\",\"PeriodicalId\":49414,\"journal\":{\"name\":\"Tunnelling and Underground Space Technology\",\"volume\":\"163 \",\"pages\":\"Article 106691\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2025-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tunnelling and Underground Space Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0886779825003293\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tunnelling and Underground Space Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0886779825003293","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
Resilience analysis of tunnel lining under creep-induced convergence of soft rock: Characterization and field application
Assessment of tunnel lining resilience is critical to ensure long-term structural stability under soft rock excavation. In this paper, a novel analytical approach is proposed to assess its performance, considering the time-dependent properties of tunnel deformation. Based on the complex stress behavior of lining, the ratio of compressive and tensile stress to its strength is selected as a performance indicator (Q) of resilience. A new resilience metric (Re) is defined to explore the non-uniform stress behavior of the lining. This metric is calculated as the ratio of the integral of disturbed Q to that of undisturbed Q by incorporating the spatial parameters of the lining. Subsequently, the rationality and applicability of the proposed method are validated through a case study involving a diversion tunnel exhibiting time-dependent deformation behavior. The parameters of compressible layer support are optimized based on Re. The results indicate that the lining Re decreases substantially (Re < 0.6) within three years and stabilizes at 0.34 after 50 years. The analysis of lining Q behavior reveals that the arch foot and invert experience more substantial reductions in Q during operation. The incorporation of compressible layers as support enhances the sustained resilience of the lining once a critical threshold is reached, maintaining Re at an approximately constant level over time. This improvement depends on the energy absorption capacity and utilization efficiency of compressible layers.
期刊介绍:
Tunnelling and Underground Space Technology is an international journal which publishes authoritative articles encompassing the development of innovative uses of underground space and the results of high quality research into improved, more cost-effective techniques for the planning, geo-investigation, design, construction, operation and maintenance of underground and earth-sheltered structures. The journal provides an effective vehicle for the improved worldwide exchange of information on developments in underground technology - and the experience gained from its use - and is strongly committed to publishing papers on the interdisciplinary aspects of creating, planning, and regulating underground space.