Julio Almansa , Francesc Salvat-Pujol , Gloria Díaz-Londoño , Artur Carnicer , Antonio M. Lallena , Francesc Salvat
{"title":"PENGEOM -用于复杂材料结构中辐射输运蒙特卡罗模拟的通用几何包(新版本公告)","authors":"Julio Almansa , Francesc Salvat-Pujol , Gloria Díaz-Londoño , Artur Carnicer , Antonio M. Lallena , Francesc Salvat","doi":"10.1016/j.cpc.2025.109634","DOIUrl":null,"url":null,"abstract":"<div><div>A new version of the code system <span>pengeom</span>, which provides a complete set of tools to handle different geometries in Monte Carlo simulations of radiation transport, is presented. The distribution package consists of a set of Fortran subroutines and a Java graphical user interface that allows building and debugging the geometry-definition file, and producing images of the geometry in two- and three dimensions. A detailed description of these tools is given in the original paper [<em>Comput. Phys. Commun.</em> <strong>199</strong> (2016) 102–113] and in the code manual included in the distribution package. The present new version differs from the previous one in that 1) it implements a more systematic handling of round-off errors, 2) the set of examples has been updated, and 3) it allows including a single voxelized box as a geometry module. With the last optional feature, a Monte Carlo code can readily be used for describing irradiation processes with complex material structures, such as medical treatments.</div></div>","PeriodicalId":285,"journal":{"name":"Computer Physics Communications","volume":"313 ","pages":"Article 109634"},"PeriodicalIF":7.2000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PENGEOM – A general-purpose geometry package for Monte Carlo simulation of radiation transport in complex material structures (New Version Announcement)\",\"authors\":\"Julio Almansa , Francesc Salvat-Pujol , Gloria Díaz-Londoño , Artur Carnicer , Antonio M. Lallena , Francesc Salvat\",\"doi\":\"10.1016/j.cpc.2025.109634\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A new version of the code system <span>pengeom</span>, which provides a complete set of tools to handle different geometries in Monte Carlo simulations of radiation transport, is presented. The distribution package consists of a set of Fortran subroutines and a Java graphical user interface that allows building and debugging the geometry-definition file, and producing images of the geometry in two- and three dimensions. A detailed description of these tools is given in the original paper [<em>Comput. Phys. Commun.</em> <strong>199</strong> (2016) 102–113] and in the code manual included in the distribution package. The present new version differs from the previous one in that 1) it implements a more systematic handling of round-off errors, 2) the set of examples has been updated, and 3) it allows including a single voxelized box as a geometry module. With the last optional feature, a Monte Carlo code can readily be used for describing irradiation processes with complex material structures, such as medical treatments.</div></div>\",\"PeriodicalId\":285,\"journal\":{\"name\":\"Computer Physics Communications\",\"volume\":\"313 \",\"pages\":\"Article 109634\"},\"PeriodicalIF\":7.2000,\"publicationDate\":\"2025-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Physics Communications\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0010465525001365\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Physics Communications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010465525001365","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
PENGEOM – A general-purpose geometry package for Monte Carlo simulation of radiation transport in complex material structures (New Version Announcement)
A new version of the code system pengeom, which provides a complete set of tools to handle different geometries in Monte Carlo simulations of radiation transport, is presented. The distribution package consists of a set of Fortran subroutines and a Java graphical user interface that allows building and debugging the geometry-definition file, and producing images of the geometry in two- and three dimensions. A detailed description of these tools is given in the original paper [Comput. Phys. Commun.199 (2016) 102–113] and in the code manual included in the distribution package. The present new version differs from the previous one in that 1) it implements a more systematic handling of round-off errors, 2) the set of examples has been updated, and 3) it allows including a single voxelized box as a geometry module. With the last optional feature, a Monte Carlo code can readily be used for describing irradiation processes with complex material structures, such as medical treatments.
期刊介绍:
The focus of CPC is on contemporary computational methods and techniques and their implementation, the effectiveness of which will normally be evidenced by the author(s) within the context of a substantive problem in physics. Within this setting CPC publishes two types of paper.
Computer Programs in Physics (CPiP)
These papers describe significant computer programs to be archived in the CPC Program Library which is held in the Mendeley Data repository. The submitted software must be covered by an approved open source licence. Papers and associated computer programs that address a problem of contemporary interest in physics that cannot be solved by current software are particularly encouraged.
Computational Physics Papers (CP)
These are research papers in, but are not limited to, the following themes across computational physics and related disciplines.
mathematical and numerical methods and algorithms;
computational models including those associated with the design, control and analysis of experiments; and
algebraic computation.
Each will normally include software implementation and performance details. The software implementation should, ideally, be available via GitHub, Zenodo or an institutional repository.In addition, research papers on the impact of advanced computer architecture and special purpose computers on computing in the physical sciences and software topics related to, and of importance in, the physical sciences may be considered.