无溶剂聚合物接枝纳米颗粒的粘弹性

IF 6.5 2区 材料科学 Q1 MATERIALS SCIENCE, COMPOSITES
Yinglin Wang , Yong Sun , Jiaping Lin, Liquan Wang, Chunhua Cai
{"title":"无溶剂聚合物接枝纳米颗粒的粘弹性","authors":"Yinglin Wang ,&nbsp;Yong Sun ,&nbsp;Jiaping Lin,&nbsp;Liquan Wang,&nbsp;Chunhua Cai","doi":"10.1016/j.coco.2025.102417","DOIUrl":null,"url":null,"abstract":"<div><div>Polymer-grafted nanoparticles (PGNs), which synergistically combine nanoparticle motion and polymer relaxation dynamics, exhibit unique hybrid viscoelastic characteristics crucial for fundamental scientific understanding and advanced material design. In this study, we employed dissipative particle dynamics (DPD) simulations coupled with nonequilibrium oscillatory shear techniques to systematically investigate the rheological properties of solvent-free PGNs with moderate grafting density. Our simulation results reveal a strong dependence of viscoelastic behavior on two key structural parameters: grafted polymer chain length and nanoparticle radius. Specifically, PGNs with shorter grafted chains or larger nanoparticles demonstrate a distinctive low-frequency elastic plateau attributed to the cage effect arising from their close-packed structures. Conversely, systems with longer grafted chains or smaller nanoparticles exhibit the formation of string-like structures, resulting in anisotropic viscoelastic responses. At higher frequencies, we observed a characteristic loss tangent peak corresponding to the collective motion of PGNs, whose position shifts with variations in grafted chain length and nanoparticle size. Furthermore, the frequency sweep curves consistently showed a reproducible downturn in loss modulus. These findings provide fundamental insights into the structure-property relationships of PGNs and offer valuable guidance for designing advanced nanocomposites with tunable dynamic moduli.</div></div>","PeriodicalId":10533,"journal":{"name":"Composites Communications","volume":"56 ","pages":"Article 102417"},"PeriodicalIF":6.5000,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Viscoelasticity of solvent-free polymer-grafted nanoparticles\",\"authors\":\"Yinglin Wang ,&nbsp;Yong Sun ,&nbsp;Jiaping Lin,&nbsp;Liquan Wang,&nbsp;Chunhua Cai\",\"doi\":\"10.1016/j.coco.2025.102417\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Polymer-grafted nanoparticles (PGNs), which synergistically combine nanoparticle motion and polymer relaxation dynamics, exhibit unique hybrid viscoelastic characteristics crucial for fundamental scientific understanding and advanced material design. In this study, we employed dissipative particle dynamics (DPD) simulations coupled with nonequilibrium oscillatory shear techniques to systematically investigate the rheological properties of solvent-free PGNs with moderate grafting density. Our simulation results reveal a strong dependence of viscoelastic behavior on two key structural parameters: grafted polymer chain length and nanoparticle radius. Specifically, PGNs with shorter grafted chains or larger nanoparticles demonstrate a distinctive low-frequency elastic plateau attributed to the cage effect arising from their close-packed structures. Conversely, systems with longer grafted chains or smaller nanoparticles exhibit the formation of string-like structures, resulting in anisotropic viscoelastic responses. At higher frequencies, we observed a characteristic loss tangent peak corresponding to the collective motion of PGNs, whose position shifts with variations in grafted chain length and nanoparticle size. Furthermore, the frequency sweep curves consistently showed a reproducible downturn in loss modulus. These findings provide fundamental insights into the structure-property relationships of PGNs and offer valuable guidance for designing advanced nanocomposites with tunable dynamic moduli.</div></div>\",\"PeriodicalId\":10533,\"journal\":{\"name\":\"Composites Communications\",\"volume\":\"56 \",\"pages\":\"Article 102417\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2025-04-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Composites Communications\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2452213925001706\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Communications","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452213925001706","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0

摘要

聚合物接枝纳米颗粒(PGNs),协同结合纳米颗粒运动和聚合物弛缓动力学,表现出独特的混合粘弹性特性,对基础科学理解和先进材料设计至关重要。在这项研究中,我们采用耗散粒子动力学(DPD)模拟与非平衡振荡剪切技术相结合,系统地研究了中等接枝密度无溶剂PGNs的流变性能。我们的模拟结果显示粘弹性行为强烈依赖于两个关键结构参数:接枝聚合物链长度和纳米颗粒半径。具体来说,具有较短接枝链或较大纳米颗粒的PGNs表现出独特的低频弹性平台,这归因于其紧密排列结构产生的笼效应。相反,具有更长的接枝链或更小的纳米颗粒的体系会形成串状结构,导致各向异性粘弹性响应。在更高的频率下,我们观察到与PGNs集体运动相对应的特征损耗切峰,其位置随着接枝链长度和纳米颗粒尺寸的变化而变化。此外,频率扫描曲线一致显示损耗模量的可重复下降。这些发现提供了对PGNs结构-性能关系的基本见解,并为设计具有可调动态模量的先进纳米复合材料提供了有价值的指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Viscoelasticity of solvent-free polymer-grafted nanoparticles

Viscoelasticity of solvent-free polymer-grafted nanoparticles
Polymer-grafted nanoparticles (PGNs), which synergistically combine nanoparticle motion and polymer relaxation dynamics, exhibit unique hybrid viscoelastic characteristics crucial for fundamental scientific understanding and advanced material design. In this study, we employed dissipative particle dynamics (DPD) simulations coupled with nonequilibrium oscillatory shear techniques to systematically investigate the rheological properties of solvent-free PGNs with moderate grafting density. Our simulation results reveal a strong dependence of viscoelastic behavior on two key structural parameters: grafted polymer chain length and nanoparticle radius. Specifically, PGNs with shorter grafted chains or larger nanoparticles demonstrate a distinctive low-frequency elastic plateau attributed to the cage effect arising from their close-packed structures. Conversely, systems with longer grafted chains or smaller nanoparticles exhibit the formation of string-like structures, resulting in anisotropic viscoelastic responses. At higher frequencies, we observed a characteristic loss tangent peak corresponding to the collective motion of PGNs, whose position shifts with variations in grafted chain length and nanoparticle size. Furthermore, the frequency sweep curves consistently showed a reproducible downturn in loss modulus. These findings provide fundamental insights into the structure-property relationships of PGNs and offer valuable guidance for designing advanced nanocomposites with tunable dynamic moduli.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Composites Communications
Composites Communications Materials Science-Ceramics and Composites
CiteScore
12.10
自引率
10.00%
发文量
340
审稿时长
36 days
期刊介绍: Composites Communications (Compos. Commun.) is a peer-reviewed journal publishing short communications and letters on the latest advances in composites science and technology. With a rapid review and publication process, its goal is to disseminate new knowledge promptly within the composites community. The journal welcomes manuscripts presenting creative concepts and new findings in design, state-of-the-art approaches in processing, synthesis, characterization, and mechanics modeling. In addition to traditional fiber-/particulate-reinforced engineering composites, it encourages submissions on composites with exceptional physical, mechanical, and fracture properties, as well as those with unique functions and significant application potential. This includes biomimetic and bio-inspired composites for biomedical applications, functional nano-composites for thermal management and energy applications, and composites designed for extreme service environments.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信