Ihtisham-ul-haq , M.I. Khan , Ming Li , Ola A․Abu Ali , Samy F. Mahmoud
{"title":"MAPbBr3修饰提高Cs2AgBiBr6太阳能电池的效率和稳定性","authors":"Ihtisham-ul-haq , M.I. Khan , Ming Li , Ola A․Abu Ali , Samy F. Mahmoud","doi":"10.1016/j.materresbull.2025.113501","DOIUrl":null,"url":null,"abstract":"<div><div>Eco-friendly perovskite materials like Cs<sub>2</sub>AgBiBr<sub>6</sub> show promise for sustainable photovoltaics but suffer from efficiency limitations due to their wide bandgap (E<sub>g</sub>) (1.94 eV). This study overcomes this challenge by incorporating 15 % MAPbBr<sub>3</sub> into Cs<sub>2</sub>AgBiBr<sub>6</sub> via a sol-gel method. Structural analyses show that MAPbBr<sub>3</sub> integration induces compressive lattice strain, reduces dislocation density by 38 %, and increases crystallite size from 27 nm to 33 nm, enhancing crystallinity. Optical analysis reveal a narrowed bandgap (1.90 eV), higher dielectric constants, and refractive indices, improving light absorption and charge generation. Photovoltaic devices with MAPbBr<sub>3</sub>-decorated Cs<sub>2</sub>AgBiBr<sub>6</sub> achieve a 25 % efficiency (η) boost (5.05 % vs. 4.04 %) due to increased short-circuit current density (J<sub>sc</sub>) (6.91 vs. 5.81 mA·cm<sup>−2</sup>) and suppressed recombination. Electrochemical impedance spectroscopy confirms improved charge transport, evidenced by a smaller Nyquist plot semicircle. This work demonstrates the potential of hybrid perovskite engineering to enhance solar cell performance while maintaining eco-friendliness.</div></div>","PeriodicalId":18265,"journal":{"name":"Materials Research Bulletin","volume":"190 ","pages":"Article 113501"},"PeriodicalIF":5.3000,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing the efficiency and stability of Cs2AgBiBr6 solar cells via MAPbBr3 decoration\",\"authors\":\"Ihtisham-ul-haq , M.I. Khan , Ming Li , Ola A․Abu Ali , Samy F. Mahmoud\",\"doi\":\"10.1016/j.materresbull.2025.113501\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Eco-friendly perovskite materials like Cs<sub>2</sub>AgBiBr<sub>6</sub> show promise for sustainable photovoltaics but suffer from efficiency limitations due to their wide bandgap (E<sub>g</sub>) (1.94 eV). This study overcomes this challenge by incorporating 15 % MAPbBr<sub>3</sub> into Cs<sub>2</sub>AgBiBr<sub>6</sub> via a sol-gel method. Structural analyses show that MAPbBr<sub>3</sub> integration induces compressive lattice strain, reduces dislocation density by 38 %, and increases crystallite size from 27 nm to 33 nm, enhancing crystallinity. Optical analysis reveal a narrowed bandgap (1.90 eV), higher dielectric constants, and refractive indices, improving light absorption and charge generation. Photovoltaic devices with MAPbBr<sub>3</sub>-decorated Cs<sub>2</sub>AgBiBr<sub>6</sub> achieve a 25 % efficiency (η) boost (5.05 % vs. 4.04 %) due to increased short-circuit current density (J<sub>sc</sub>) (6.91 vs. 5.81 mA·cm<sup>−2</sup>) and suppressed recombination. Electrochemical impedance spectroscopy confirms improved charge transport, evidenced by a smaller Nyquist plot semicircle. This work demonstrates the potential of hybrid perovskite engineering to enhance solar cell performance while maintaining eco-friendliness.</div></div>\",\"PeriodicalId\":18265,\"journal\":{\"name\":\"Materials Research Bulletin\",\"volume\":\"190 \",\"pages\":\"Article 113501\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Research Bulletin\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0025540825002090\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Research Bulletin","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0025540825002090","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
像Cs2AgBiBr6这样的环保钙钛矿材料显示出可持续光伏发电的前景,但由于其宽带隙(Eg) (1.94 eV)而受到效率限制。本研究通过溶胶-凝胶法将15%的MAPbBr3加入到Cs2AgBiBr6中,克服了这一挑战。结构分析表明,MAPbBr3集成引起压缩晶格应变,位错密度降低38%,晶体尺寸从27 nm增加到33 nm,结晶度提高。光学分析表明,该材料的带隙变窄(1.90 eV),介电常数和折射率更高,改善了光吸收和电荷产生。由于短路电流密度(Jsc) (6.91 mA·cm−2 vs. 5.81 mA·cm−2)的增加和复合抑制,mapbbr3修饰的Cs2AgBiBr6光伏器件的效率(η)提高了25% (5.05% vs. 4.04%)。电化学阻抗谱证实了电荷输运的改善,由更小的奈奎斯特图半圆证明。这项工作证明了混合钙钛矿工程在提高太阳能电池性能的同时保持生态友好性的潜力。
Enhancing the efficiency and stability of Cs2AgBiBr6 solar cells via MAPbBr3 decoration
Eco-friendly perovskite materials like Cs2AgBiBr6 show promise for sustainable photovoltaics but suffer from efficiency limitations due to their wide bandgap (Eg) (1.94 eV). This study overcomes this challenge by incorporating 15 % MAPbBr3 into Cs2AgBiBr6 via a sol-gel method. Structural analyses show that MAPbBr3 integration induces compressive lattice strain, reduces dislocation density by 38 %, and increases crystallite size from 27 nm to 33 nm, enhancing crystallinity. Optical analysis reveal a narrowed bandgap (1.90 eV), higher dielectric constants, and refractive indices, improving light absorption and charge generation. Photovoltaic devices with MAPbBr3-decorated Cs2AgBiBr6 achieve a 25 % efficiency (η) boost (5.05 % vs. 4.04 %) due to increased short-circuit current density (Jsc) (6.91 vs. 5.81 mA·cm−2) and suppressed recombination. Electrochemical impedance spectroscopy confirms improved charge transport, evidenced by a smaller Nyquist plot semicircle. This work demonstrates the potential of hybrid perovskite engineering to enhance solar cell performance while maintaining eco-friendliness.
期刊介绍:
Materials Research Bulletin is an international journal reporting high-impact research on processing-structure-property relationships in functional materials and nanomaterials with interesting electronic, magnetic, optical, thermal, mechanical or catalytic properties. Papers purely on thermodynamics or theoretical calculations (e.g., density functional theory) do not fall within the scope of the journal unless they also demonstrate a clear link to physical properties. Topics covered include functional materials (e.g., dielectrics, pyroelectrics, piezoelectrics, ferroelectrics, relaxors, thermoelectrics, etc.); electrochemistry and solid-state ionics (e.g., photovoltaics, batteries, sensors, and fuel cells); nanomaterials, graphene, and nanocomposites; luminescence and photocatalysis; crystal-structure and defect-structure analysis; novel electronics; non-crystalline solids; flexible electronics; protein-material interactions; and polymeric ion-exchange membranes.