基于物理的机器学习预测惠普尔护盾的弹道极限

IF 5.1 2区 工程技术 Q1 ENGINEERING, MECHANICAL
Shannon Ryan, Hung Le, Julian Berk, AV Arun Kumar, Svetha Venkatesh
{"title":"基于物理的机器学习预测惠普尔护盾的弹道极限","authors":"Shannon Ryan,&nbsp;Hung Le,&nbsp;Julian Berk,&nbsp;AV Arun Kumar,&nbsp;Svetha Venkatesh","doi":"10.1016/j.ijimpeng.2025.105364","DOIUrl":null,"url":null,"abstract":"<div><div>Data driven machine learning (ML) models can provide improved accuracy over semi-analytical ballistic limit equations (BLEs) for predicting the outcome of space debris impacts on spacecraft structures. However, they should not be applied beyond the scope of their training data which limits their utilisation in mission risk assessments. We develop and demonstrate two approaches for incorporating physics knowledge, in the form of existing BLEs, into ML models to mitigate this limitation. The resulting physics-informed models provide modestly improved classification accuracy when applied on a database of experimental records as well as improved agreement with BLEs when applied outside the scope of the training dataset, compared to previous data-driven ML models.</div></div>","PeriodicalId":50318,"journal":{"name":"International Journal of Impact Engineering","volume":"203 ","pages":"Article 105364"},"PeriodicalIF":5.1000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Physics-informed machine learning for predicting the ballistic limit of whipple shields\",\"authors\":\"Shannon Ryan,&nbsp;Hung Le,&nbsp;Julian Berk,&nbsp;AV Arun Kumar,&nbsp;Svetha Venkatesh\",\"doi\":\"10.1016/j.ijimpeng.2025.105364\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Data driven machine learning (ML) models can provide improved accuracy over semi-analytical ballistic limit equations (BLEs) for predicting the outcome of space debris impacts on spacecraft structures. However, they should not be applied beyond the scope of their training data which limits their utilisation in mission risk assessments. We develop and demonstrate two approaches for incorporating physics knowledge, in the form of existing BLEs, into ML models to mitigate this limitation. The resulting physics-informed models provide modestly improved classification accuracy when applied on a database of experimental records as well as improved agreement with BLEs when applied outside the scope of the training dataset, compared to previous data-driven ML models.</div></div>\",\"PeriodicalId\":50318,\"journal\":{\"name\":\"International Journal of Impact Engineering\",\"volume\":\"203 \",\"pages\":\"Article 105364\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2025-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Impact Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0734743X25001459\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Impact Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0734743X25001459","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

数据驱动的机器学习(ML)模型可以提供比半解析弹道极限方程(BLEs)更高的精度,用于预测空间碎片撞击航天器结构的结果。然而,它们不应超出其培训数据的范围,这限制了它们在任务风险评估中的使用。我们开发并演示了两种将物理知识(以现有BLEs的形式)整合到ML模型中的方法,以减轻这一局限性。与之前的数据驱动的机器学习模型相比,当应用于实验记录数据库时,由此产生的基于物理的模型提供了适度提高的分类准确性,并且当应用于训练数据集范围之外时,与BLEs的一致性也得到了改善。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Physics-informed machine learning for predicting the ballistic limit of whipple shields
Data driven machine learning (ML) models can provide improved accuracy over semi-analytical ballistic limit equations (BLEs) for predicting the outcome of space debris impacts on spacecraft structures. However, they should not be applied beyond the scope of their training data which limits their utilisation in mission risk assessments. We develop and demonstrate two approaches for incorporating physics knowledge, in the form of existing BLEs, into ML models to mitigate this limitation. The resulting physics-informed models provide modestly improved classification accuracy when applied on a database of experimental records as well as improved agreement with BLEs when applied outside the scope of the training dataset, compared to previous data-driven ML models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Impact Engineering
International Journal of Impact Engineering 工程技术-工程:机械
CiteScore
8.70
自引率
13.70%
发文量
241
审稿时长
52 days
期刊介绍: The International Journal of Impact Engineering, established in 1983 publishes original research findings related to the response of structures, components and materials subjected to impact, blast and high-rate loading. Areas relevant to the journal encompass the following general topics and those associated with them: -Behaviour and failure of structures and materials under impact and blast loading -Systems for protection and absorption of impact and blast loading -Terminal ballistics -Dynamic behaviour and failure of materials including plasticity and fracture -Stress waves -Structural crashworthiness -High-rate mechanical and forming processes -Impact, blast and high-rate loading/measurement techniques and their applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信