Shun Li , Guodong Zhou , Guopeng Zhou , Jun Nie , Jianglin Zhang , Songjuan Gao , Weidong Cao
{"title":"冬绿施肥下水稻秸秆还田通过胞外酶的化学计量调节增加了土壤碳库","authors":"Shun Li , Guodong Zhou , Guopeng Zhou , Jun Nie , Jianglin Zhang , Songjuan Gao , Weidong Cao","doi":"10.1016/j.still.2025.106617","DOIUrl":null,"url":null,"abstract":"<div><div>The combined application of green manure and rice straw (GMS) effectively enhances carbon sequestration in paddy fields. However, the regulatory mechanisms governing straw carbon incorporation into soil organic carbon (SOC) pools under this practice remain unclear. A two-year study was conducted based on a long-term field experiment to investigate soil organic carbon storage, decomposition patterns of rice straw (S) and green manure (GM), extracellular enzyme stoichiometry, and carbon flux dynamics between straw and soil pools. Over seven years, GMS exhibited annual carbon sequestration rates surpassing those of GM, S, and winter fallow without S return (CF) by 518, 451, and 766 kg/ha/year, respectively. Regulated by nutrient stoichiometry, extracellular enzyme activities associated with residue decomposition and carbon limitation of microbial metabolism were enhanced in GMS, thereby accelerating decomposition processes. Following the two-year experimental period, decomposition rates in GMS were elevated by 23.4 % and 32.7 % relative to GM and S treatments, respectively. This accelerated decomposition promoted the translocation of straw carbon into stable SOC pools via microbial residue pathways, as substantiated by 54.2 %, 25.5 %, and 18.4 % greater amino sugar accumulation in GMS relative to CF, GM, and S treatments, respectively. In summary, GMS regulates microbial resource allocation through stoichiometric modulation of residues, functioning as a critical interface governing straw carbon transfer to SOC pools, thus ultimately enhancing SOC sequestration.</div></div>","PeriodicalId":49503,"journal":{"name":"Soil & Tillage Research","volume":"252 ","pages":"Article 106617"},"PeriodicalIF":6.1000,"publicationDate":"2025-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rice straw returning under winter green manuring enhances soil carbon pool via stoichiometric regulation of extracellular enzymes\",\"authors\":\"Shun Li , Guodong Zhou , Guopeng Zhou , Jun Nie , Jianglin Zhang , Songjuan Gao , Weidong Cao\",\"doi\":\"10.1016/j.still.2025.106617\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The combined application of green manure and rice straw (GMS) effectively enhances carbon sequestration in paddy fields. However, the regulatory mechanisms governing straw carbon incorporation into soil organic carbon (SOC) pools under this practice remain unclear. A two-year study was conducted based on a long-term field experiment to investigate soil organic carbon storage, decomposition patterns of rice straw (S) and green manure (GM), extracellular enzyme stoichiometry, and carbon flux dynamics between straw and soil pools. Over seven years, GMS exhibited annual carbon sequestration rates surpassing those of GM, S, and winter fallow without S return (CF) by 518, 451, and 766 kg/ha/year, respectively. Regulated by nutrient stoichiometry, extracellular enzyme activities associated with residue decomposition and carbon limitation of microbial metabolism were enhanced in GMS, thereby accelerating decomposition processes. Following the two-year experimental period, decomposition rates in GMS were elevated by 23.4 % and 32.7 % relative to GM and S treatments, respectively. This accelerated decomposition promoted the translocation of straw carbon into stable SOC pools via microbial residue pathways, as substantiated by 54.2 %, 25.5 %, and 18.4 % greater amino sugar accumulation in GMS relative to CF, GM, and S treatments, respectively. In summary, GMS regulates microbial resource allocation through stoichiometric modulation of residues, functioning as a critical interface governing straw carbon transfer to SOC pools, thus ultimately enhancing SOC sequestration.</div></div>\",\"PeriodicalId\":49503,\"journal\":{\"name\":\"Soil & Tillage Research\",\"volume\":\"252 \",\"pages\":\"Article 106617\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2025-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Soil & Tillage Research\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167198725001710\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"SOIL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soil & Tillage Research","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167198725001710","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
Rice straw returning under winter green manuring enhances soil carbon pool via stoichiometric regulation of extracellular enzymes
The combined application of green manure and rice straw (GMS) effectively enhances carbon sequestration in paddy fields. However, the regulatory mechanisms governing straw carbon incorporation into soil organic carbon (SOC) pools under this practice remain unclear. A two-year study was conducted based on a long-term field experiment to investigate soil organic carbon storage, decomposition patterns of rice straw (S) and green manure (GM), extracellular enzyme stoichiometry, and carbon flux dynamics between straw and soil pools. Over seven years, GMS exhibited annual carbon sequestration rates surpassing those of GM, S, and winter fallow without S return (CF) by 518, 451, and 766 kg/ha/year, respectively. Regulated by nutrient stoichiometry, extracellular enzyme activities associated with residue decomposition and carbon limitation of microbial metabolism were enhanced in GMS, thereby accelerating decomposition processes. Following the two-year experimental period, decomposition rates in GMS were elevated by 23.4 % and 32.7 % relative to GM and S treatments, respectively. This accelerated decomposition promoted the translocation of straw carbon into stable SOC pools via microbial residue pathways, as substantiated by 54.2 %, 25.5 %, and 18.4 % greater amino sugar accumulation in GMS relative to CF, GM, and S treatments, respectively. In summary, GMS regulates microbial resource allocation through stoichiometric modulation of residues, functioning as a critical interface governing straw carbon transfer to SOC pools, thus ultimately enhancing SOC sequestration.
期刊介绍:
Soil & Tillage Research examines the physical, chemical and biological changes in the soil caused by tillage and field traffic. Manuscripts will be considered on aspects of soil science, physics, technology, mechanization and applied engineering for a sustainable balance among productivity, environmental quality and profitability. The following are examples of suitable topics within the scope of the journal of Soil and Tillage Research:
The agricultural and biosystems engineering associated with tillage (including no-tillage, reduced-tillage and direct drilling), irrigation and drainage, crops and crop rotations, fertilization, rehabilitation of mine spoils and processes used to modify soils. Soil change effects on establishment and yield of crops, growth of plants and roots, structure and erosion of soil, cycling of carbon and nutrients, greenhouse gas emissions, leaching, runoff and other processes that affect environmental quality. Characterization or modeling of tillage and field traffic responses, soil, climate, or topographic effects, soil deformation processes, tillage tools, traction devices, energy requirements, economics, surface and subsurface water quality effects, tillage effects on weed, pest and disease control, and their interactions.