Nan Sheng , Jianbo Qiao , Leyi Wei , Hua Shi , Huannan Guo , Changshun Yang
{"title":"使用深度学习预测m6A站点的计算模型","authors":"Nan Sheng , Jianbo Qiao , Leyi Wei , Hua Shi , Huannan Guo , Changshun Yang","doi":"10.1016/j.ymeth.2025.04.011","DOIUrl":null,"url":null,"abstract":"<div><div>RNA modifications play a crucial role in enhancing the structural and functional diversity of RNA molecules and regulating various stages of the RNA life cycle. Among these modifications, N6-Methyladenosine (m6A) is the most common internal modification in eukaryotic mRNAs and has been extensively studied over the past decade. Accurate identification of m6A modification sites is essential for understanding their function and underlying mechanisms. Traditional methods predominantly rely on machine learning techniques to recognize m6A sites, which often fail to capture the contextual features of these sites comprehensively. In this study, we comprehensively summarize previously published methods based on machine learning and deep learning. We also validate multiple deep learning approaches on benchmark dataset, including previously underutilized methods in m6A site prediction, pre-trained models specifically designed for biological sequence and other basic deep learning methods. Additionally, we further analyze the dataset features and interpret the model’s predictions to enhance understanding. Our experimental results clearly demonstrate the effectiveness of the deep learning models, elucidating their strong potential in accurately recognizing m6A modification sites.</div></div>","PeriodicalId":390,"journal":{"name":"Methods","volume":"240 ","pages":"Pages 113-124"},"PeriodicalIF":4.2000,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Computational models for prediction of m6A sites using deep learning\",\"authors\":\"Nan Sheng , Jianbo Qiao , Leyi Wei , Hua Shi , Huannan Guo , Changshun Yang\",\"doi\":\"10.1016/j.ymeth.2025.04.011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>RNA modifications play a crucial role in enhancing the structural and functional diversity of RNA molecules and regulating various stages of the RNA life cycle. Among these modifications, N6-Methyladenosine (m6A) is the most common internal modification in eukaryotic mRNAs and has been extensively studied over the past decade. Accurate identification of m6A modification sites is essential for understanding their function and underlying mechanisms. Traditional methods predominantly rely on machine learning techniques to recognize m6A sites, which often fail to capture the contextual features of these sites comprehensively. In this study, we comprehensively summarize previously published methods based on machine learning and deep learning. We also validate multiple deep learning approaches on benchmark dataset, including previously underutilized methods in m6A site prediction, pre-trained models specifically designed for biological sequence and other basic deep learning methods. Additionally, we further analyze the dataset features and interpret the model’s predictions to enhance understanding. Our experimental results clearly demonstrate the effectiveness of the deep learning models, elucidating their strong potential in accurately recognizing m6A modification sites.</div></div>\",\"PeriodicalId\":390,\"journal\":{\"name\":\"Methods\",\"volume\":\"240 \",\"pages\":\"Pages 113-124\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2025-04-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Methods\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1046202325001082\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1046202325001082","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Computational models for prediction of m6A sites using deep learning
RNA modifications play a crucial role in enhancing the structural and functional diversity of RNA molecules and regulating various stages of the RNA life cycle. Among these modifications, N6-Methyladenosine (m6A) is the most common internal modification in eukaryotic mRNAs and has been extensively studied over the past decade. Accurate identification of m6A modification sites is essential for understanding their function and underlying mechanisms. Traditional methods predominantly rely on machine learning techniques to recognize m6A sites, which often fail to capture the contextual features of these sites comprehensively. In this study, we comprehensively summarize previously published methods based on machine learning and deep learning. We also validate multiple deep learning approaches on benchmark dataset, including previously underutilized methods in m6A site prediction, pre-trained models specifically designed for biological sequence and other basic deep learning methods. Additionally, we further analyze the dataset features and interpret the model’s predictions to enhance understanding. Our experimental results clearly demonstrate the effectiveness of the deep learning models, elucidating their strong potential in accurately recognizing m6A modification sites.
期刊介绍:
Methods focuses on rapidly developing techniques in the experimental biological and medical sciences.
Each topical issue, organized by a guest editor who is an expert in the area covered, consists solely of invited quality articles by specialist authors, many of them reviews. Issues are devoted to specific technical approaches with emphasis on clear detailed descriptions of protocols that allow them to be reproduced easily. The background information provided enables researchers to understand the principles underlying the methods; other helpful sections include comparisons of alternative methods giving the advantages and disadvantages of particular methods, guidance on avoiding potential pitfalls, and suggestions for troubleshooting.