Ai-liang CHEN , Yao LIU , Zi-biao WANG , Huan-wu ZHAN , Xue-xian JIANG , Feng-long SUN , Jiann-yang HWANG , Xi-jun ZHANG
{"title":"拉瓦尔喷嘴顶吹射流流动特性的湍流数值模拟","authors":"Ai-liang CHEN , Yao LIU , Zi-biao WANG , Huan-wu ZHAN , Xue-xian JIANG , Feng-long SUN , Jiann-yang HWANG , Xi-jun ZHANG","doi":"10.1016/S1003-6326(24)66753-1","DOIUrl":null,"url":null,"abstract":"<div><div>The turbulent characteristics of the top-blown Laval nozzle and the influence of pressure and Mach number were studied through numerical simulation. With 2.72% error between the results and the empirical formula, the results are reliable. Nozzle fluid is influenced by pipe structure, causing pressure and density to drop as speed increases. Differences in pressure and velocity between the jet and surrounding gas lead to jet velocity attenuation, flow expansion, deflection, and eddy currents. The optimal top blowing pressure is 0.6 MPa, and the center velocity and width of the jet are 345 m/s and 0.124 m, respectively, at 20<em>D</em><sub>e</sub> (<em>D</em><sub>e</sub> is the nozzle exit diameter). It achieves a maximum jet velocity of 456 m/s. The optimal nozzle Mach number is 1.75, with a maximum jet velocity of 451 m/s. At 20<em>D</em><sub>e</sub>, the jet center velocity is 338 m/s, with a width of 0.12 m.</div></div>","PeriodicalId":23191,"journal":{"name":"Transactions of Nonferrous Metals Society of China","volume":"35 4","pages":"Pages 1350-1361"},"PeriodicalIF":4.7000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Turbulence numerical simulation of flow characteristics of Laval nozzle top blow jet\",\"authors\":\"Ai-liang CHEN , Yao LIU , Zi-biao WANG , Huan-wu ZHAN , Xue-xian JIANG , Feng-long SUN , Jiann-yang HWANG , Xi-jun ZHANG\",\"doi\":\"10.1016/S1003-6326(24)66753-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The turbulent characteristics of the top-blown Laval nozzle and the influence of pressure and Mach number were studied through numerical simulation. With 2.72% error between the results and the empirical formula, the results are reliable. Nozzle fluid is influenced by pipe structure, causing pressure and density to drop as speed increases. Differences in pressure and velocity between the jet and surrounding gas lead to jet velocity attenuation, flow expansion, deflection, and eddy currents. The optimal top blowing pressure is 0.6 MPa, and the center velocity and width of the jet are 345 m/s and 0.124 m, respectively, at 20<em>D</em><sub>e</sub> (<em>D</em><sub>e</sub> is the nozzle exit diameter). It achieves a maximum jet velocity of 456 m/s. The optimal nozzle Mach number is 1.75, with a maximum jet velocity of 451 m/s. At 20<em>D</em><sub>e</sub>, the jet center velocity is 338 m/s, with a width of 0.12 m.</div></div>\",\"PeriodicalId\":23191,\"journal\":{\"name\":\"Transactions of Nonferrous Metals Society of China\",\"volume\":\"35 4\",\"pages\":\"Pages 1350-1361\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions of Nonferrous Metals Society of China\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1003632624667531\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of Nonferrous Metals Society of China","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1003632624667531","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
Turbulence numerical simulation of flow characteristics of Laval nozzle top blow jet
The turbulent characteristics of the top-blown Laval nozzle and the influence of pressure and Mach number were studied through numerical simulation. With 2.72% error between the results and the empirical formula, the results are reliable. Nozzle fluid is influenced by pipe structure, causing pressure and density to drop as speed increases. Differences in pressure and velocity between the jet and surrounding gas lead to jet velocity attenuation, flow expansion, deflection, and eddy currents. The optimal top blowing pressure is 0.6 MPa, and the center velocity and width of the jet are 345 m/s and 0.124 m, respectively, at 20De (De is the nozzle exit diameter). It achieves a maximum jet velocity of 456 m/s. The optimal nozzle Mach number is 1.75, with a maximum jet velocity of 451 m/s. At 20De, the jet center velocity is 338 m/s, with a width of 0.12 m.
期刊介绍:
The Transactions of Nonferrous Metals Society of China (Trans. Nonferrous Met. Soc. China), founded in 1991 and sponsored by The Nonferrous Metals Society of China, is published monthly now and mainly contains reports of original research which reflect the new progresses in the field of nonferrous metals science and technology, including mineral processing, extraction metallurgy, metallic materials and heat treatments, metal working, physical metallurgy, powder metallurgy, with the emphasis on fundamental science. It is the unique preeminent publication in English for scientists, engineers, under/post-graduates on the field of nonferrous metals industry. This journal is covered by many famous abstract/index systems and databases such as SCI Expanded, Ei Compendex Plus, INSPEC, CA, METADEX, AJ and JICST.