破译APTES在调整NiO纳米层在13X沸石上的金属支撑相互作用中对CO2甲烷化的作用

Nasir Shezad , Muddasar Safdar , Harvey Arellano-García , Cheuk-Wai Tai , Shaojiang Chen , Dong-Kyun Seo , Shujie You , Alberto Vomiero , Farid Akhtar
{"title":"破译APTES在调整NiO纳米层在13X沸石上的金属支撑相互作用中对CO2甲烷化的作用","authors":"Nasir Shezad ,&nbsp;Muddasar Safdar ,&nbsp;Harvey Arellano-García ,&nbsp;Cheuk-Wai Tai ,&nbsp;Shaojiang Chen ,&nbsp;Dong-Kyun Seo ,&nbsp;Shujie You ,&nbsp;Alberto Vomiero ,&nbsp;Farid Akhtar","doi":"10.1016/j.ccst.2025.100424","DOIUrl":null,"url":null,"abstract":"<div><div>The development of robust nickel catalysts on porous substrates offers great potential for converting carbon dioxide (CO<sub>2</sub>) into methane, thereby helping to address the global warming and sustainability challenges. This study investigates the dispersion and stability of Ni nanolayers by grafting bifunctional groups over the hierarchical zeolite 13X (h13X) support using (3-aminopropyl)triethoxysilane (APTES). The Ni nanolayers, with a thickness of 1.5–7 nm, were deposited around the edges of h13X and analyzed using STEM imaging. A clear shift in the binding energies was observed by XPS analysis, substantiating the enhanced metal-support interaction (MSI) between NiO and h13X. The influence of reaction temperature on APTES incorporation into h13X was revealed by H<sub>2</sub>-TPR and CO<sub>2</sub>-TPD, with notable variations in the reducibility and surface basicity profiles of the catalysts. The optimized catalyst exhibited CO<sub>2</sub> conversion of 61 % with CH<sub>4</sub> selectivity of 97 % under GHSV of 60,000 mlg<sub>Cat</sub><sup>-1</sup>h<sup>-1</sup> at 400 °C and 1 bar and demonstrated robust stability over a period of 150 h without discernible degradation. The enhanced performance could be attributed to the strengthened MSI and reduced size of Ni nanolayers over h13X. These findings highlight the development of robust heterogeneous catalysts by changing the surface chemistry of support material for various catalytic applications.</div></div>","PeriodicalId":9387,"journal":{"name":"Carbon Capture Science & Technology","volume":"15 ","pages":"Article 100424"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deciphering the role of APTES in tuning the metal support interaction of NiO nanolayers over hierarchical zeolite 13X for CO2 methanation\",\"authors\":\"Nasir Shezad ,&nbsp;Muddasar Safdar ,&nbsp;Harvey Arellano-García ,&nbsp;Cheuk-Wai Tai ,&nbsp;Shaojiang Chen ,&nbsp;Dong-Kyun Seo ,&nbsp;Shujie You ,&nbsp;Alberto Vomiero ,&nbsp;Farid Akhtar\",\"doi\":\"10.1016/j.ccst.2025.100424\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The development of robust nickel catalysts on porous substrates offers great potential for converting carbon dioxide (CO<sub>2</sub>) into methane, thereby helping to address the global warming and sustainability challenges. This study investigates the dispersion and stability of Ni nanolayers by grafting bifunctional groups over the hierarchical zeolite 13X (h13X) support using (3-aminopropyl)triethoxysilane (APTES). The Ni nanolayers, with a thickness of 1.5–7 nm, were deposited around the edges of h13X and analyzed using STEM imaging. A clear shift in the binding energies was observed by XPS analysis, substantiating the enhanced metal-support interaction (MSI) between NiO and h13X. The influence of reaction temperature on APTES incorporation into h13X was revealed by H<sub>2</sub>-TPR and CO<sub>2</sub>-TPD, with notable variations in the reducibility and surface basicity profiles of the catalysts. The optimized catalyst exhibited CO<sub>2</sub> conversion of 61 % with CH<sub>4</sub> selectivity of 97 % under GHSV of 60,000 mlg<sub>Cat</sub><sup>-1</sup>h<sup>-1</sup> at 400 °C and 1 bar and demonstrated robust stability over a period of 150 h without discernible degradation. The enhanced performance could be attributed to the strengthened MSI and reduced size of Ni nanolayers over h13X. These findings highlight the development of robust heterogeneous catalysts by changing the surface chemistry of support material for various catalytic applications.</div></div>\",\"PeriodicalId\":9387,\"journal\":{\"name\":\"Carbon Capture Science & Technology\",\"volume\":\"15 \",\"pages\":\"Article 100424\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carbon Capture Science & Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772656825000636\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Capture Science & Technology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772656825000636","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

多孔基板上坚固耐用的镍催化剂的开发为将二氧化碳(CO2)转化为甲烷提供了巨大的潜力,从而有助于应对全球变暖和可持续性挑战。本研究利用(3-氨基丙基)三乙氧基硅烷(APTES)在13X (h13X)分子筛载体上接枝双官能团,研究了Ni纳米层的分散和稳定性。在h13X边缘周围沉积厚度为1.5 ~ 7 nm的Ni纳米层,并使用STEM成像进行分析。XPS分析发现,NiO与h13X的结合能发生了明显的变化,证实了NiO与h13X之间的金属-载体相互作用(MSI)增强。H2-TPR和CO2-TPD揭示了反应温度对APTES掺入h13X的影响,催化剂的还原性和表面碱度变化显著。优化后的催化剂在400°C和1 bar的GHSV为60,000 mlgCat-1h-1的条件下,CO2转化率为61%,CH4选择性为97%,并且在150 h的时间内表现出良好的稳定性,没有明显的降解。性能的增强可归因于h13X强化了MSI和减小了Ni纳米层的尺寸。这些发现强调了通过改变各种催化应用的支撑材料的表面化学来开发坚固的非均相催化剂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deciphering the role of APTES in tuning the metal support interaction of NiO nanolayers over hierarchical zeolite 13X for CO2 methanation
The development of robust nickel catalysts on porous substrates offers great potential for converting carbon dioxide (CO2) into methane, thereby helping to address the global warming and sustainability challenges. This study investigates the dispersion and stability of Ni nanolayers by grafting bifunctional groups over the hierarchical zeolite 13X (h13X) support using (3-aminopropyl)triethoxysilane (APTES). The Ni nanolayers, with a thickness of 1.5–7 nm, were deposited around the edges of h13X and analyzed using STEM imaging. A clear shift in the binding energies was observed by XPS analysis, substantiating the enhanced metal-support interaction (MSI) between NiO and h13X. The influence of reaction temperature on APTES incorporation into h13X was revealed by H2-TPR and CO2-TPD, with notable variations in the reducibility and surface basicity profiles of the catalysts. The optimized catalyst exhibited CO2 conversion of 61 % with CH4 selectivity of 97 % under GHSV of 60,000 mlgCat-1h-1 at 400 °C and 1 bar and demonstrated robust stability over a period of 150 h without discernible degradation. The enhanced performance could be attributed to the strengthened MSI and reduced size of Ni nanolayers over h13X. These findings highlight the development of robust heterogeneous catalysts by changing the surface chemistry of support material for various catalytic applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信