Alessandra Caliendo , Simona Camorani , Luis Exequiel Ibarra , Gabriella Pinto , Lisa Agnello , Sandra Albanese , Antonietta Caianiello , Anna Illiano , Rosaria Festa , Vincenzo Ambrosio , Giosuè Scognamiglio , Monica Cantile , Angela Amoresano , Monica Fedele , Antonella Zannetti , Laura Cerchia
{"title":"一种新的靶向cd44的适体识别化疗耐药的间充质干细胞样TNBC细胞并抑制肿瘤生长","authors":"Alessandra Caliendo , Simona Camorani , Luis Exequiel Ibarra , Gabriella Pinto , Lisa Agnello , Sandra Albanese , Antonietta Caianiello , Anna Illiano , Rosaria Festa , Vincenzo Ambrosio , Giosuè Scognamiglio , Monica Cantile , Angela Amoresano , Monica Fedele , Antonella Zannetti , Laura Cerchia","doi":"10.1016/j.bioactmat.2025.04.027","DOIUrl":null,"url":null,"abstract":"<div><div>Triple-negative breast cancer (TNBC) represents a significant therapeutic challenge owing to the scarcity of targeted medicines and elevated recurrence rates. We previously reported the development of the nuclease-resistant RNA sTN58 aptamer, which selectively targets TNBC cells. Here, sTN58 aptamer was employed to capture and purify its binding target from the membrane protein fraction of cisplatin-resistant mesenchymal stem-like TNBC cells. Mass spectrometry in conjunction with aptamer binding assays across various cancer cell lines identified CD44 as the cellular target of sTN58. By binding to CD44, sTN58 inhibits the invasive growth and hyaluronic acid-dependent tube formation in chemoresistant TNBC cells, where CD44 serves as a key driver of tumor cell aggressiveness and stem-like plasticity. Moreover, in vivo studies demonstrated the aptamer's high tumor targeting efficacy and its capacity to significantly inhibit tumor growth and lung metastases following intravenous administration in mice with orthotopic TNBC. Overall, our findings reveal the striking potential of sTN58 as a targeting reagent for the recognition and therapy of cancers overexpressing CD44.</div></div>","PeriodicalId":8762,"journal":{"name":"Bioactive Materials","volume":"50 ","pages":"Pages 443-460"},"PeriodicalIF":18.0000,"publicationDate":"2025-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel CD44-targeting aptamer recognizes chemoresistant mesenchymal stem-like TNBC cells and inhibits tumor growth\",\"authors\":\"Alessandra Caliendo , Simona Camorani , Luis Exequiel Ibarra , Gabriella Pinto , Lisa Agnello , Sandra Albanese , Antonietta Caianiello , Anna Illiano , Rosaria Festa , Vincenzo Ambrosio , Giosuè Scognamiglio , Monica Cantile , Angela Amoresano , Monica Fedele , Antonella Zannetti , Laura Cerchia\",\"doi\":\"10.1016/j.bioactmat.2025.04.027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Triple-negative breast cancer (TNBC) represents a significant therapeutic challenge owing to the scarcity of targeted medicines and elevated recurrence rates. We previously reported the development of the nuclease-resistant RNA sTN58 aptamer, which selectively targets TNBC cells. Here, sTN58 aptamer was employed to capture and purify its binding target from the membrane protein fraction of cisplatin-resistant mesenchymal stem-like TNBC cells. Mass spectrometry in conjunction with aptamer binding assays across various cancer cell lines identified CD44 as the cellular target of sTN58. By binding to CD44, sTN58 inhibits the invasive growth and hyaluronic acid-dependent tube formation in chemoresistant TNBC cells, where CD44 serves as a key driver of tumor cell aggressiveness and stem-like plasticity. Moreover, in vivo studies demonstrated the aptamer's high tumor targeting efficacy and its capacity to significantly inhibit tumor growth and lung metastases following intravenous administration in mice with orthotopic TNBC. Overall, our findings reveal the striking potential of sTN58 as a targeting reagent for the recognition and therapy of cancers overexpressing CD44.</div></div>\",\"PeriodicalId\":8762,\"journal\":{\"name\":\"Bioactive Materials\",\"volume\":\"50 \",\"pages\":\"Pages 443-460\"},\"PeriodicalIF\":18.0000,\"publicationDate\":\"2025-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioactive Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2452199X25001756\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioactive Materials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452199X25001756","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
A novel CD44-targeting aptamer recognizes chemoresistant mesenchymal stem-like TNBC cells and inhibits tumor growth
Triple-negative breast cancer (TNBC) represents a significant therapeutic challenge owing to the scarcity of targeted medicines and elevated recurrence rates. We previously reported the development of the nuclease-resistant RNA sTN58 aptamer, which selectively targets TNBC cells. Here, sTN58 aptamer was employed to capture and purify its binding target from the membrane protein fraction of cisplatin-resistant mesenchymal stem-like TNBC cells. Mass spectrometry in conjunction with aptamer binding assays across various cancer cell lines identified CD44 as the cellular target of sTN58. By binding to CD44, sTN58 inhibits the invasive growth and hyaluronic acid-dependent tube formation in chemoresistant TNBC cells, where CD44 serves as a key driver of tumor cell aggressiveness and stem-like plasticity. Moreover, in vivo studies demonstrated the aptamer's high tumor targeting efficacy and its capacity to significantly inhibit tumor growth and lung metastases following intravenous administration in mice with orthotopic TNBC. Overall, our findings reveal the striking potential of sTN58 as a targeting reagent for the recognition and therapy of cancers overexpressing CD44.
Bioactive MaterialsBiochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
28.00
自引率
6.30%
发文量
436
审稿时长
20 days
期刊介绍:
Bioactive Materials is a peer-reviewed research publication that focuses on advancements in bioactive materials. The journal accepts research papers, reviews, and rapid communications in the field of next-generation biomaterials that interact with cells, tissues, and organs in various living organisms.
The primary goal of Bioactive Materials is to promote the science and engineering of biomaterials that exhibit adaptiveness to the biological environment. These materials are specifically designed to stimulate or direct appropriate cell and tissue responses or regulate interactions with microorganisms.
The journal covers a wide range of bioactive materials, including those that are engineered or designed in terms of their physical form (e.g. particulate, fiber), topology (e.g. porosity, surface roughness), or dimensions (ranging from macro to nano-scales). Contributions are sought from the following categories of bioactive materials:
Bioactive metals and alloys
Bioactive inorganics: ceramics, glasses, and carbon-based materials
Bioactive polymers and gels
Bioactive materials derived from natural sources
Bioactive composites
These materials find applications in human and veterinary medicine, such as implants, tissue engineering scaffolds, cell/drug/gene carriers, as well as imaging and sensing devices.