粗粒度的分子研究揭示了水合物中增加二氧化碳储存的潜力

IF 7.1 3区 材料科学 Q1 GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY
Meisam Adibifard, Olufemi Olorode
{"title":"粗粒度的分子研究揭示了水合物中增加二氧化碳储存的潜力","authors":"Meisam Adibifard,&nbsp;Olufemi Olorode","doi":"10.1016/j.mtsust.2025.101106","DOIUrl":null,"url":null,"abstract":"<div><div>The interest in curtailing global warming has accelerated research in capturing and storing carbon dioxide (CO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>), which accounts for 76% of all greenhouse gases. Considering the potential of capturing, storing, and transporting CO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> as hydrates, several researchers have performed molecular dynamics (MD) and experimental studies of the formation and dissociation of gas hydrates. Although these studies have illustrated essential mechanisms, such as the nucleation and growth of gas hydrates, we show that the small length scales of these studies limit them to processes smaller than the sizes of the domain simulated. To address this limitation, we performed MD studies of CO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> hydrate growth in systems that are two orders of magnitude larger than in previous studies. This allowed us to observe the trapping of CO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> nanobubbles within a growing solid hydrate for the first time. We computed the CO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> density in the trapped nanobubble and observed that it was 2.5 times its corresponding density in the solid hydrate, which indicates the potential to significantly increase the storage of CO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> (and other gases) in gas hydrates. The CO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> nanobubbles were bigger than the simulation domains used in most previous MD simulations of CO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> hydrates, indicating the importance of these large-scale studies.</div></div>","PeriodicalId":18322,"journal":{"name":"Materials Today Sustainability","volume":"30 ","pages":"Article 101106"},"PeriodicalIF":7.1000,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Coarse-grained molecular studies reveal potential for increased CO2 storage in hydrates\",\"authors\":\"Meisam Adibifard,&nbsp;Olufemi Olorode\",\"doi\":\"10.1016/j.mtsust.2025.101106\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The interest in curtailing global warming has accelerated research in capturing and storing carbon dioxide (CO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>), which accounts for 76% of all greenhouse gases. Considering the potential of capturing, storing, and transporting CO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> as hydrates, several researchers have performed molecular dynamics (MD) and experimental studies of the formation and dissociation of gas hydrates. Although these studies have illustrated essential mechanisms, such as the nucleation and growth of gas hydrates, we show that the small length scales of these studies limit them to processes smaller than the sizes of the domain simulated. To address this limitation, we performed MD studies of CO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> hydrate growth in systems that are two orders of magnitude larger than in previous studies. This allowed us to observe the trapping of CO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> nanobubbles within a growing solid hydrate for the first time. We computed the CO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> density in the trapped nanobubble and observed that it was 2.5 times its corresponding density in the solid hydrate, which indicates the potential to significantly increase the storage of CO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> (and other gases) in gas hydrates. The CO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> nanobubbles were bigger than the simulation domains used in most previous MD simulations of CO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> hydrates, indicating the importance of these large-scale studies.</div></div>\",\"PeriodicalId\":18322,\"journal\":{\"name\":\"Materials Today Sustainability\",\"volume\":\"30 \",\"pages\":\"Article 101106\"},\"PeriodicalIF\":7.1000,\"publicationDate\":\"2025-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Today Sustainability\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2589234725000351\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Sustainability","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589234725000351","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

二氧化碳(CO2)占所有温室气体的 76%,对遏制全球变暖的关注加速了捕获和储存二氧化碳的研究。考虑到以水合物形式捕获、储存和运输二氧化碳的潜力,一些研究人员对气体水合物的形成和解离进行了分子动力学(MD)和实验研究。虽然这些研究说明了气体水合物的成核和生长等基本机制,但我们发现,这些研究的长度尺度较小,只能研究小于模拟域尺寸的过程。为了解决这一局限性,我们在比以往研究大两个数量级的系统中进行了二氧化碳水合物生长的 MD 研究。这使我们首次观察到二氧化碳纳米气泡在生长的固体水合物中的捕获。我们计算了被捕获纳米气泡中的二氧化碳密度,发现它是固体水合物中相应密度的 2.5 倍,这表明气体水合物中的二氧化碳(和其他气体)储存量有可能大幅增加。二氧化碳纳米气泡比之前大多数二氧化碳水合物 MD 模拟所用的模拟域都要大,这表明了这些大规模研究的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Coarse-grained molecular studies reveal potential for increased CO2 storage in hydrates

Coarse-grained molecular studies reveal potential for increased CO2 storage in hydrates
The interest in curtailing global warming has accelerated research in capturing and storing carbon dioxide (CO2), which accounts for 76% of all greenhouse gases. Considering the potential of capturing, storing, and transporting CO2 as hydrates, several researchers have performed molecular dynamics (MD) and experimental studies of the formation and dissociation of gas hydrates. Although these studies have illustrated essential mechanisms, such as the nucleation and growth of gas hydrates, we show that the small length scales of these studies limit them to processes smaller than the sizes of the domain simulated. To address this limitation, we performed MD studies of CO2 hydrate growth in systems that are two orders of magnitude larger than in previous studies. This allowed us to observe the trapping of CO2 nanobubbles within a growing solid hydrate for the first time. We computed the CO2 density in the trapped nanobubble and observed that it was 2.5 times its corresponding density in the solid hydrate, which indicates the potential to significantly increase the storage of CO2 (and other gases) in gas hydrates. The CO2 nanobubbles were bigger than the simulation domains used in most previous MD simulations of CO2 hydrates, indicating the importance of these large-scale studies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.80
自引率
6.40%
发文量
174
审稿时长
32 days
期刊介绍: Materials Today Sustainability is a multi-disciplinary journal covering all aspects of sustainability through materials science. With a rapidly increasing population with growing demands, materials science has emerged as a critical discipline toward protecting of the environment and ensuring the long term survival of future generations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信