Devin B. Phillips , Christine A. Darko , Matthew D. James , Sandra G. Vincent , Alexandra M. McCartney , Lara K. Sreibers , Nicolle J. Domnik , J. Alberto Neder , Denis E. O’Donnell
{"title":"妊娠晚期用力性呼吸困难的神经生理机制:一个案例研究","authors":"Devin B. Phillips , Christine A. Darko , Matthew D. James , Sandra G. Vincent , Alexandra M. McCartney , Lara K. Sreibers , Nicolle J. Domnik , J. Alberto Neder , Denis E. O’Donnell","doi":"10.1016/j.resp.2025.104434","DOIUrl":null,"url":null,"abstract":"<div><div>The neurophysiological mechanisms of exertional dyspnea in advanced pregnancy remain incompletely understood. This short case report describes the neurophysiological and sensory responses during standardized cardiopulmonary exercise testing (CPET) in one healthy adult female at three timepoints: a) 3 months pre-pregnancy, b) 35 weeks pregnant (third trimester [T3]), and, c) 1 year post-partum. At rest and during exercise, detailed measurements of neurophysiological, gas-exchange and sensory parameters were completed. Compared to both pre-pregnancy and post-partum, ventilatory requirements, electrical activation of the diaphragm (EMGdi, index of inspiratory neural drive) and esophageal pressure swings were higher in T3 throughout exercise. Moreover, at a given work rate, perceived dyspnea was greater in T3 compared with pre-pregnancy and post-partum and increased in close association with heightened EMGdi throughout exercise. At peak exercise in T3, dyspnea/ventilation and EMGdi/ventilation ratios were greater, compared with pre-pregnancy and post-partum. Compared with pre-pregnancy, EMGdi and perceived dyspnea were greater post-partum near the limits of exercise tolerance, secondary to earlier onset of respiratory compensation-mediated increases in ventilation. In the current case, advanced pregnancy was associated with markedly elevated ratings of dyspnea and lower exercise capacity during a standardized clinical CPET. At submaximal intensities, the heightened dyspnea reflected the awareness of pregnancy-induced increases in ventilatory requirements, inspiratory neural drive, and respiratory muscle effort. At the limits of tolerance, heightened dyspnea and inspiratory neural drive reflected a complex combination of increase ventilatory requirements and mechanical constraints on tidal volume expansion. Compared with pre-pregnancy, residual activity-related dyspnea 1-year post-partum appears to reflect physical deconditioning.</div></div>","PeriodicalId":20961,"journal":{"name":"Respiratory Physiology & Neurobiology","volume":"335 ","pages":"Article 104434"},"PeriodicalIF":1.9000,"publicationDate":"2025-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Neurophysiological mechanisms of exertional dyspnea in advanced pregnancy: A case study\",\"authors\":\"Devin B. Phillips , Christine A. Darko , Matthew D. James , Sandra G. Vincent , Alexandra M. McCartney , Lara K. Sreibers , Nicolle J. Domnik , J. Alberto Neder , Denis E. O’Donnell\",\"doi\":\"10.1016/j.resp.2025.104434\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The neurophysiological mechanisms of exertional dyspnea in advanced pregnancy remain incompletely understood. This short case report describes the neurophysiological and sensory responses during standardized cardiopulmonary exercise testing (CPET) in one healthy adult female at three timepoints: a) 3 months pre-pregnancy, b) 35 weeks pregnant (third trimester [T3]), and, c) 1 year post-partum. At rest and during exercise, detailed measurements of neurophysiological, gas-exchange and sensory parameters were completed. Compared to both pre-pregnancy and post-partum, ventilatory requirements, electrical activation of the diaphragm (EMGdi, index of inspiratory neural drive) and esophageal pressure swings were higher in T3 throughout exercise. Moreover, at a given work rate, perceived dyspnea was greater in T3 compared with pre-pregnancy and post-partum and increased in close association with heightened EMGdi throughout exercise. At peak exercise in T3, dyspnea/ventilation and EMGdi/ventilation ratios were greater, compared with pre-pregnancy and post-partum. Compared with pre-pregnancy, EMGdi and perceived dyspnea were greater post-partum near the limits of exercise tolerance, secondary to earlier onset of respiratory compensation-mediated increases in ventilation. In the current case, advanced pregnancy was associated with markedly elevated ratings of dyspnea and lower exercise capacity during a standardized clinical CPET. At submaximal intensities, the heightened dyspnea reflected the awareness of pregnancy-induced increases in ventilatory requirements, inspiratory neural drive, and respiratory muscle effort. At the limits of tolerance, heightened dyspnea and inspiratory neural drive reflected a complex combination of increase ventilatory requirements and mechanical constraints on tidal volume expansion. Compared with pre-pregnancy, residual activity-related dyspnea 1-year post-partum appears to reflect physical deconditioning.</div></div>\",\"PeriodicalId\":20961,\"journal\":{\"name\":\"Respiratory Physiology & Neurobiology\",\"volume\":\"335 \",\"pages\":\"Article 104434\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2025-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Respiratory Physiology & Neurobiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S156990482500045X\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Respiratory Physiology & Neurobiology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S156990482500045X","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
Neurophysiological mechanisms of exertional dyspnea in advanced pregnancy: A case study
The neurophysiological mechanisms of exertional dyspnea in advanced pregnancy remain incompletely understood. This short case report describes the neurophysiological and sensory responses during standardized cardiopulmonary exercise testing (CPET) in one healthy adult female at three timepoints: a) 3 months pre-pregnancy, b) 35 weeks pregnant (third trimester [T3]), and, c) 1 year post-partum. At rest and during exercise, detailed measurements of neurophysiological, gas-exchange and sensory parameters were completed. Compared to both pre-pregnancy and post-partum, ventilatory requirements, electrical activation of the diaphragm (EMGdi, index of inspiratory neural drive) and esophageal pressure swings were higher in T3 throughout exercise. Moreover, at a given work rate, perceived dyspnea was greater in T3 compared with pre-pregnancy and post-partum and increased in close association with heightened EMGdi throughout exercise. At peak exercise in T3, dyspnea/ventilation and EMGdi/ventilation ratios were greater, compared with pre-pregnancy and post-partum. Compared with pre-pregnancy, EMGdi and perceived dyspnea were greater post-partum near the limits of exercise tolerance, secondary to earlier onset of respiratory compensation-mediated increases in ventilation. In the current case, advanced pregnancy was associated with markedly elevated ratings of dyspnea and lower exercise capacity during a standardized clinical CPET. At submaximal intensities, the heightened dyspnea reflected the awareness of pregnancy-induced increases in ventilatory requirements, inspiratory neural drive, and respiratory muscle effort. At the limits of tolerance, heightened dyspnea and inspiratory neural drive reflected a complex combination of increase ventilatory requirements and mechanical constraints on tidal volume expansion. Compared with pre-pregnancy, residual activity-related dyspnea 1-year post-partum appears to reflect physical deconditioning.
期刊介绍:
Respiratory Physiology & Neurobiology (RESPNB) publishes original articles and invited reviews concerning physiology and pathophysiology of respiration in its broadest sense.
Although a special focus is on topics in neurobiology, high quality papers in respiratory molecular and cellular biology are also welcome, as are high-quality papers in traditional areas, such as:
-Mechanics of breathing-
Gas exchange and acid-base balance-
Respiration at rest and exercise-
Respiration in unusual conditions, like high or low pressure or changes of temperature, low ambient oxygen-
Embryonic and adult respiration-
Comparative respiratory physiology.
Papers on clinical aspects, original methods, as well as theoretical papers are also considered as long as they foster the understanding of respiratory physiology and pathophysiology.