Alyssa P. Cartwright, Benjamin C. Wollant, Elizabeth S. York, Liwei Zheng, Steven Yee, Huong C. Chau, Glaivy Batsuli and H. Tom Soh*,
{"title":"最小处理全血中Xa因子活性的直接光学检测","authors":"Alyssa P. Cartwright, Benjamin C. Wollant, Elizabeth S. York, Liwei Zheng, Steven Yee, Huong C. Chau, Glaivy Batsuli and H. Tom Soh*, ","doi":"10.1021/acssensors.5c0043010.1021/acssensors.5c00430","DOIUrl":null,"url":null,"abstract":"<p >The ability to measure factor Xa activity directly in whole blood samples offers a path toward point-of-care monitoring and personalized anticoagulant dosage, potentially reducing bleeding risk and other anticoagulant-associated complications. We present a strategy to enable direct optical detection of factor Xa in minimally processed whole blood samples. Our strategy relies on a custom FRET-pair labeled DNA-peptide substrate, allowing FRET ratio to be monitored as an indicator of factor Xa activity. Substrates are tethered to a tapered-fiber sensor to allow evanescent detection of fluorescence directly at the sensor surface, minimizing background media interference and enabling detection directly in blood samples. After characterizing the custom substrate and demonstrating the correlation of fiber-based measurements to an existing chromogenic assay, we demonstrate the detection of endogenous factor Xa activity in >85% whole blood. Finally, we demonstrate the detection of therapeutic concentrations of enoxaparin, a widely used anticoagulant, directly in 90% whole blood in less than an hour and correlate these measurements to activated partial thromboplastin time (aPTT) testing. Together, these results indicate a promising strategy to achieve point-of-care factor Xa detection, enabling personalized anticoagulant treatment and reducing adverse outcomes.</p>","PeriodicalId":24,"journal":{"name":"ACS Sensors","volume":"10 4","pages":"3143–3151 3143–3151"},"PeriodicalIF":9.1000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Direct Optical Detection of Factor Xa Activity in Minimally Processed Whole Blood\",\"authors\":\"Alyssa P. Cartwright, Benjamin C. Wollant, Elizabeth S. York, Liwei Zheng, Steven Yee, Huong C. Chau, Glaivy Batsuli and H. Tom Soh*, \",\"doi\":\"10.1021/acssensors.5c0043010.1021/acssensors.5c00430\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The ability to measure factor Xa activity directly in whole blood samples offers a path toward point-of-care monitoring and personalized anticoagulant dosage, potentially reducing bleeding risk and other anticoagulant-associated complications. We present a strategy to enable direct optical detection of factor Xa in minimally processed whole blood samples. Our strategy relies on a custom FRET-pair labeled DNA-peptide substrate, allowing FRET ratio to be monitored as an indicator of factor Xa activity. Substrates are tethered to a tapered-fiber sensor to allow evanescent detection of fluorescence directly at the sensor surface, minimizing background media interference and enabling detection directly in blood samples. After characterizing the custom substrate and demonstrating the correlation of fiber-based measurements to an existing chromogenic assay, we demonstrate the detection of endogenous factor Xa activity in >85% whole blood. Finally, we demonstrate the detection of therapeutic concentrations of enoxaparin, a widely used anticoagulant, directly in 90% whole blood in less than an hour and correlate these measurements to activated partial thromboplastin time (aPTT) testing. Together, these results indicate a promising strategy to achieve point-of-care factor Xa detection, enabling personalized anticoagulant treatment and reducing adverse outcomes.</p>\",\"PeriodicalId\":24,\"journal\":{\"name\":\"ACS Sensors\",\"volume\":\"10 4\",\"pages\":\"3143–3151 3143–3151\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2025-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Sensors\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acssensors.5c00430\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Sensors","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acssensors.5c00430","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Direct Optical Detection of Factor Xa Activity in Minimally Processed Whole Blood
The ability to measure factor Xa activity directly in whole blood samples offers a path toward point-of-care monitoring and personalized anticoagulant dosage, potentially reducing bleeding risk and other anticoagulant-associated complications. We present a strategy to enable direct optical detection of factor Xa in minimally processed whole blood samples. Our strategy relies on a custom FRET-pair labeled DNA-peptide substrate, allowing FRET ratio to be monitored as an indicator of factor Xa activity. Substrates are tethered to a tapered-fiber sensor to allow evanescent detection of fluorescence directly at the sensor surface, minimizing background media interference and enabling detection directly in blood samples. After characterizing the custom substrate and demonstrating the correlation of fiber-based measurements to an existing chromogenic assay, we demonstrate the detection of endogenous factor Xa activity in >85% whole blood. Finally, we demonstrate the detection of therapeutic concentrations of enoxaparin, a widely used anticoagulant, directly in 90% whole blood in less than an hour and correlate these measurements to activated partial thromboplastin time (aPTT) testing. Together, these results indicate a promising strategy to achieve point-of-care factor Xa detection, enabling personalized anticoagulant treatment and reducing adverse outcomes.
期刊介绍:
ACS Sensors is a peer-reviewed research journal that focuses on the dissemination of new and original knowledge in the field of sensor science, particularly those that selectively sense chemical or biological species or processes. The journal covers a broad range of topics, including but not limited to biosensors, chemical sensors, gas sensors, intracellular sensors, single molecule sensors, cell chips, and microfluidic devices. It aims to publish articles that address conceptual advances in sensing technology applicable to various types of analytes or application papers that report on the use of existing sensing concepts in new ways or for new analytes.