可定制的超薄氧化硫化铜室温,可逆,选择性硫化氢传感

IF 8.2 1区 化学 Q1 CHEMISTRY, ANALYTICAL
Li Zhou*, Rui Ou, Pu Zhang, Lin Shen*, Kai Xu*, Weijie Wang, Sanjida Afrin, Yange Luan, Jiaru Zhang, Guanghui Ren, Yinfen Cheng, Zhong Li, Guanyu Chen, Bao Yue Zhang and Jian Zhen Ou*, 
{"title":"可定制的超薄氧化硫化铜室温,可逆,选择性硫化氢传感","authors":"Li Zhou*,&nbsp;Rui Ou,&nbsp;Pu Zhang,&nbsp;Lin Shen*,&nbsp;Kai Xu*,&nbsp;Weijie Wang,&nbsp;Sanjida Afrin,&nbsp;Yange Luan,&nbsp;Jiaru Zhang,&nbsp;Guanghui Ren,&nbsp;Yinfen Cheng,&nbsp;Zhong Li,&nbsp;Guanyu Chen,&nbsp;Bao Yue Zhang and Jian Zhen Ou*,&nbsp;","doi":"10.1021/acssensors.4c0334910.1021/acssensors.4c03349","DOIUrl":null,"url":null,"abstract":"<p >Accurate, low-cost, and energy-efficient detection of hydrogen sulfide (H<sub>2</sub>S) is vital for industries such as petroleum, natural gas, and wastewater treatment. While chemiresistive sensors are well suited for this purpose, traditional metal oxides typically require high operating temperatures (&gt;100 °C) or external stimuli (e.g., UV light) for activation. In this work, we introduce two-dimensional (2D) copper oxysulfide nanoflakes (∼10 nm thick) as a novel material for room-temperature, reversible, and selective H<sub>2</sub>S sensing. These 2D copper oxysulfides, synthesized via the calcination of copper sulfide under both oxygen-deficient and oxygen-rich conditions, show significant changes in crystal structure and electronic band properties compared to copper sulfide while retaining p-type semiconducting behavior. This alteration enables efficient interfacial charge transfer with adsorbed H<sub>2</sub>S molecules. The oxygen-rich copper oxysulfide exhibits a response magnitude of 143% for 2 ppm of H<sub>2</sub>S in air at room temperature, with a linear response across concentrations ranging from 0.25 to 2 ppm. Furthermore, the sensor demonstrates complete reversibility, excellent selectivity, and high stability. This work presents a promising strategy for high-performance room-temperature H<sub>2</sub>S sensing utilizing metal oxysulfides as an emerging class of materials derived from metal oxides and sulfides.</p>","PeriodicalId":24,"journal":{"name":"ACS Sensors","volume":"10 4","pages":"2721–2731 2721–2731"},"PeriodicalIF":8.2000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tailorable Ultrathin Copper Oxysulfide for Room-Temperature, Reversible, and Selective Hydrogen Sulfide Sensing\",\"authors\":\"Li Zhou*,&nbsp;Rui Ou,&nbsp;Pu Zhang,&nbsp;Lin Shen*,&nbsp;Kai Xu*,&nbsp;Weijie Wang,&nbsp;Sanjida Afrin,&nbsp;Yange Luan,&nbsp;Jiaru Zhang,&nbsp;Guanghui Ren,&nbsp;Yinfen Cheng,&nbsp;Zhong Li,&nbsp;Guanyu Chen,&nbsp;Bao Yue Zhang and Jian Zhen Ou*,&nbsp;\",\"doi\":\"10.1021/acssensors.4c0334910.1021/acssensors.4c03349\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Accurate, low-cost, and energy-efficient detection of hydrogen sulfide (H<sub>2</sub>S) is vital for industries such as petroleum, natural gas, and wastewater treatment. While chemiresistive sensors are well suited for this purpose, traditional metal oxides typically require high operating temperatures (&gt;100 °C) or external stimuli (e.g., UV light) for activation. In this work, we introduce two-dimensional (2D) copper oxysulfide nanoflakes (∼10 nm thick) as a novel material for room-temperature, reversible, and selective H<sub>2</sub>S sensing. These 2D copper oxysulfides, synthesized via the calcination of copper sulfide under both oxygen-deficient and oxygen-rich conditions, show significant changes in crystal structure and electronic band properties compared to copper sulfide while retaining p-type semiconducting behavior. This alteration enables efficient interfacial charge transfer with adsorbed H<sub>2</sub>S molecules. The oxygen-rich copper oxysulfide exhibits a response magnitude of 143% for 2 ppm of H<sub>2</sub>S in air at room temperature, with a linear response across concentrations ranging from 0.25 to 2 ppm. Furthermore, the sensor demonstrates complete reversibility, excellent selectivity, and high stability. This work presents a promising strategy for high-performance room-temperature H<sub>2</sub>S sensing utilizing metal oxysulfides as an emerging class of materials derived from metal oxides and sulfides.</p>\",\"PeriodicalId\":24,\"journal\":{\"name\":\"ACS Sensors\",\"volume\":\"10 4\",\"pages\":\"2721–2731 2721–2731\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2025-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Sensors\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acssensors.4c03349\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Sensors","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acssensors.4c03349","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

准确、低成本、节能的硫化氢(H2S)检测对于石油、天然气和废水处理等行业至关重要。虽然化学传感器非常适合这一目的,但传统的金属氧化物通常需要高工作温度(>100°C)或外部刺激(例如紫外光)才能激活。在这项工作中,我们引入了二维(2D)氧化硫化铜纳米片(约10纳米厚)作为室温、可逆和选择性H2S传感的新材料。在贫氧和富氧条件下,通过硫化铜煅烧合成了这些二维氧化硫化铜,与硫化铜相比,在保持p型半导体行为的同时,晶体结构和电子带性质发生了显著变化。这种改变使吸附的H2S分子能够有效地进行界面电荷转移。富氧硫化铜在室温下对空气中2ppm的H2S的响应幅度为143%,在0.25到2ppm的浓度范围内呈线性响应。此外,该传感器具有完全可逆性、优良的选择性和高稳定性。这项工作提出了一种很有前途的策略,利用金属氧硫化物作为一种来自金属氧化物和硫化物的新兴材料,实现高性能室温H2S传感。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Tailorable Ultrathin Copper Oxysulfide for Room-Temperature, Reversible, and Selective Hydrogen Sulfide Sensing

Tailorable Ultrathin Copper Oxysulfide for Room-Temperature, Reversible, and Selective Hydrogen Sulfide Sensing

Accurate, low-cost, and energy-efficient detection of hydrogen sulfide (H2S) is vital for industries such as petroleum, natural gas, and wastewater treatment. While chemiresistive sensors are well suited for this purpose, traditional metal oxides typically require high operating temperatures (>100 °C) or external stimuli (e.g., UV light) for activation. In this work, we introduce two-dimensional (2D) copper oxysulfide nanoflakes (∼10 nm thick) as a novel material for room-temperature, reversible, and selective H2S sensing. These 2D copper oxysulfides, synthesized via the calcination of copper sulfide under both oxygen-deficient and oxygen-rich conditions, show significant changes in crystal structure and electronic band properties compared to copper sulfide while retaining p-type semiconducting behavior. This alteration enables efficient interfacial charge transfer with adsorbed H2S molecules. The oxygen-rich copper oxysulfide exhibits a response magnitude of 143% for 2 ppm of H2S in air at room temperature, with a linear response across concentrations ranging from 0.25 to 2 ppm. Furthermore, the sensor demonstrates complete reversibility, excellent selectivity, and high stability. This work presents a promising strategy for high-performance room-temperature H2S sensing utilizing metal oxysulfides as an emerging class of materials derived from metal oxides and sulfides.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Sensors
ACS Sensors Chemical Engineering-Bioengineering
CiteScore
14.50
自引率
3.40%
发文量
372
期刊介绍: ACS Sensors is a peer-reviewed research journal that focuses on the dissemination of new and original knowledge in the field of sensor science, particularly those that selectively sense chemical or biological species or processes. The journal covers a broad range of topics, including but not limited to biosensors, chemical sensors, gas sensors, intracellular sensors, single molecule sensors, cell chips, and microfluidic devices. It aims to publish articles that address conceptual advances in sensing technology applicable to various types of analytes or application papers that report on the use of existing sensing concepts in new ways or for new analytes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信