MoS2/MoSe2平面异质结构纳米缝蛋白测序

IF 5.3 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Zhen Zhang,  and , Wei Si*, 
{"title":"MoS2/MoSe2平面异质结构纳米缝蛋白测序","authors":"Zhen Zhang,&nbsp; and ,&nbsp;Wei Si*,&nbsp;","doi":"10.1021/acsanm.5c0076610.1021/acsanm.5c00766","DOIUrl":null,"url":null,"abstract":"<p >Nanopore sensing technology is reshaping proteomics analysis with simplicity, convenience, and high sensitivity. However, it is now facing challenges of random pore clogging and ultrafast speed when proteins penetrate the nanopores. In this computational study, we propose a nanoslit sensing approach based on two-dimensional (2D) MoS<sub>2</sub>/MoSe<sub>2</sub> planar heterostructures. Molecular dynamics (MD) simulations of peptide sequencing under a pulling force and applied electric field are performed. Results show that the peptides are confined within the MoSe<sub>2</sub> domain of the heterostructure, and this confinement effect can be optimized by tailoring the nanostripe length. Besides, the pulling force and current signals can be collected simultaneously. Using the customized geometry, characteristic signals of 20 residues can be detected with excellent discrimination. This study elucidates the sensing mechanism of nanoslit sensors based on planar heterostructures and provides theoretical guidance for the design of devices to control molecular transport during nanopore sequencing.</p>","PeriodicalId":6,"journal":{"name":"ACS Applied Nano Materials","volume":"8 16","pages":"8274–8282 8274–8282"},"PeriodicalIF":5.3000,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MoS2/MoSe2 Planar Heterostructure Nanoslits for Protein Sequencing\",\"authors\":\"Zhen Zhang,&nbsp; and ,&nbsp;Wei Si*,&nbsp;\",\"doi\":\"10.1021/acsanm.5c0076610.1021/acsanm.5c00766\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Nanopore sensing technology is reshaping proteomics analysis with simplicity, convenience, and high sensitivity. However, it is now facing challenges of random pore clogging and ultrafast speed when proteins penetrate the nanopores. In this computational study, we propose a nanoslit sensing approach based on two-dimensional (2D) MoS<sub>2</sub>/MoSe<sub>2</sub> planar heterostructures. Molecular dynamics (MD) simulations of peptide sequencing under a pulling force and applied electric field are performed. Results show that the peptides are confined within the MoSe<sub>2</sub> domain of the heterostructure, and this confinement effect can be optimized by tailoring the nanostripe length. Besides, the pulling force and current signals can be collected simultaneously. Using the customized geometry, characteristic signals of 20 residues can be detected with excellent discrimination. This study elucidates the sensing mechanism of nanoslit sensors based on planar heterostructures and provides theoretical guidance for the design of devices to control molecular transport during nanopore sequencing.</p>\",\"PeriodicalId\":6,\"journal\":{\"name\":\"ACS Applied Nano Materials\",\"volume\":\"8 16\",\"pages\":\"8274–8282 8274–8282\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Nano Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsanm.5c00766\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Nano Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsanm.5c00766","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

纳米孔传感技术正以其简单、方便和高灵敏度重塑蛋白质组学分析。然而,目前面临的挑战是随机孔堵塞和超快的速度,当蛋白质穿透纳米孔。在这项计算研究中,我们提出了一种基于二维(2D) MoS2/MoSe2平面异质结构的纳米狭缝传感方法。在拉力和外加电场作用下进行了肽序列的分子动力学模拟。结果表明,多肽被限制在异质结构的MoSe2结构域内,并且可以通过调整纳米条纹长度来优化这种限制效应。并可同时采集拉力和电流信号。使用定制的几何结构,可以检测到20个残差的特征信号,具有良好的判别性。本研究阐明了基于平面异质结构的纳米缝传感器的传感机理,为纳米孔测序过程中分子输运控制器件的设计提供了理论指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

MoS2/MoSe2 Planar Heterostructure Nanoslits for Protein Sequencing

MoS2/MoSe2 Planar Heterostructure Nanoslits for Protein Sequencing

Nanopore sensing technology is reshaping proteomics analysis with simplicity, convenience, and high sensitivity. However, it is now facing challenges of random pore clogging and ultrafast speed when proteins penetrate the nanopores. In this computational study, we propose a nanoslit sensing approach based on two-dimensional (2D) MoS2/MoSe2 planar heterostructures. Molecular dynamics (MD) simulations of peptide sequencing under a pulling force and applied electric field are performed. Results show that the peptides are confined within the MoSe2 domain of the heterostructure, and this confinement effect can be optimized by tailoring the nanostripe length. Besides, the pulling force and current signals can be collected simultaneously. Using the customized geometry, characteristic signals of 20 residues can be detected with excellent discrimination. This study elucidates the sensing mechanism of nanoslit sensors based on planar heterostructures and provides theoretical guidance for the design of devices to control molecular transport during nanopore sequencing.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.30
自引率
3.40%
发文量
1601
期刊介绍: ACS Applied Nano Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics and biology relevant to applications of nanomaterials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important applications of nanomaterials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信