{"title":"利用聚二乙炔机械变色的面内各向异性的高灵敏度可穿戴色力传感器","authors":"Jianlu Zheng, Jiali Chen, Massimiliano Galluzzi, Yuge Hou, Kaori Sugihara","doi":"10.1021/acs.nanolett.5c00085","DOIUrl":null,"url":null,"abstract":"Force sensitivity is a crucial parameter in mechanochromic materials, determining their application range and practical success. In this study, we reveal an unexplored degree of freedom─in-plane anisotropy─for significantly enhancing the force sensitivity of polydiacetylene. Utilizing our newly developed dual nanofriction force/fluorescence microscopy setup, we discovered that force sensitivity reaches its peak when external forces are applied perpendicular to the polymer backbones in-plane. This phenomenon is explained by a “domino effect”, where point loads propagate along the backbones and affect the polymer structure even hundreds of nanometers from the contact point. Leveraging this finding, we developed a highly sensitive, stretchable force sensor and demonstrated that aligning polydiacetylene crystals perpendicular to the force direction increased the sensor’s sensitivity by up to 14-fold.","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"5 1","pages":""},"PeriodicalIF":9.6000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Highly Sensitive Wearable Chromic Force Sensor Utilizing In-Plane Anisotropy in Polydiacetylene Mechanochromism\",\"authors\":\"Jianlu Zheng, Jiali Chen, Massimiliano Galluzzi, Yuge Hou, Kaori Sugihara\",\"doi\":\"10.1021/acs.nanolett.5c00085\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Force sensitivity is a crucial parameter in mechanochromic materials, determining their application range and practical success. In this study, we reveal an unexplored degree of freedom─in-plane anisotropy─for significantly enhancing the force sensitivity of polydiacetylene. Utilizing our newly developed dual nanofriction force/fluorescence microscopy setup, we discovered that force sensitivity reaches its peak when external forces are applied perpendicular to the polymer backbones in-plane. This phenomenon is explained by a “domino effect”, where point loads propagate along the backbones and affect the polymer structure even hundreds of nanometers from the contact point. Leveraging this finding, we developed a highly sensitive, stretchable force sensor and demonstrated that aligning polydiacetylene crystals perpendicular to the force direction increased the sensor’s sensitivity by up to 14-fold.\",\"PeriodicalId\":53,\"journal\":{\"name\":\"Nano Letters\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":9.6000,\"publicationDate\":\"2025-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.nanolett.5c00085\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.5c00085","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Highly Sensitive Wearable Chromic Force Sensor Utilizing In-Plane Anisotropy in Polydiacetylene Mechanochromism
Force sensitivity is a crucial parameter in mechanochromic materials, determining their application range and practical success. In this study, we reveal an unexplored degree of freedom─in-plane anisotropy─for significantly enhancing the force sensitivity of polydiacetylene. Utilizing our newly developed dual nanofriction force/fluorescence microscopy setup, we discovered that force sensitivity reaches its peak when external forces are applied perpendicular to the polymer backbones in-plane. This phenomenon is explained by a “domino effect”, where point loads propagate along the backbones and affect the polymer structure even hundreds of nanometers from the contact point. Leveraging this finding, we developed a highly sensitive, stretchable force sensor and demonstrated that aligning polydiacetylene crystals perpendicular to the force direction increased the sensor’s sensitivity by up to 14-fold.
期刊介绍:
Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including:
- Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale
- Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies
- Modeling and simulation of synthetic, assembly, and interaction processes
- Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance
- Applications of nanoscale materials in living and environmental systems
Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.