铜配位工程玻璃水凝胶具有超强性和结构可编程性

IF 13 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Small Pub Date : 2025-04-24 DOI:10.1002/smll.202502949
Xiaoting Wang, Ning Tang, Yujia Jiang, Min-Hui Li, Jun Hu
{"title":"铜配位工程玻璃水凝胶具有超强性和结构可编程性","authors":"Xiaoting Wang, Ning Tang, Yujia Jiang, Min-Hui Li, Jun Hu","doi":"10.1002/smll.202502949","DOIUrl":null,"url":null,"abstract":"Glassy hydrogels, which maintain a distinctive glassy state at ambient temperature, are appealing for engineering applications. Nevertheless, the existing glassy hydrogels often suffer from inferior strength, inadequate stiffness, and environmental stability caused by weak physical cross-linking. Herein, we present an ultrastiff and ultrastrong glassy hydrogel by introducing robust coordination bonds into a network composed of polyacrylic acid (PAA) and polyvinyl alcohol (PVA), using a copper acetate-assisted strategy. The presence of acetate anions creates a relatively alkaline environment, which deprotonates the carboxyl groups of PAA. This deprotonation exposes carboxylate groups that readily coordinate with copper ions, establishing a densely cross-linked network in the glassy state. The resultant glassy hydrogel exhibits record-breaking Young's modulus (469.7 MPa), tensile strength (19.2 MPa), and exceptional environmental stability. Moreover, the reversible softening and vitrification induced by the breakage and reforming of coordination bonds endows glassy hydrogel with structural programmability, allowing for the construction of integrated auxetic hydrogel (IAH). The IAH demonstrates enhanced mechanical properties compared to the auxetic skeleton alone while maintaining a negative Poisson's ratio over a wide strain range of 0–29%. This study provides a promising engineering route for the development of advanced glassy hydrogels.","PeriodicalId":228,"journal":{"name":"Small","volume":"72 1","pages":""},"PeriodicalIF":13.0000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Copper-Coordination Engineered Glassy Hydrogels Featuring Ultrastiffness and Structural Programmability\",\"authors\":\"Xiaoting Wang, Ning Tang, Yujia Jiang, Min-Hui Li, Jun Hu\",\"doi\":\"10.1002/smll.202502949\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Glassy hydrogels, which maintain a distinctive glassy state at ambient temperature, are appealing for engineering applications. Nevertheless, the existing glassy hydrogels often suffer from inferior strength, inadequate stiffness, and environmental stability caused by weak physical cross-linking. Herein, we present an ultrastiff and ultrastrong glassy hydrogel by introducing robust coordination bonds into a network composed of polyacrylic acid (PAA) and polyvinyl alcohol (PVA), using a copper acetate-assisted strategy. The presence of acetate anions creates a relatively alkaline environment, which deprotonates the carboxyl groups of PAA. This deprotonation exposes carboxylate groups that readily coordinate with copper ions, establishing a densely cross-linked network in the glassy state. The resultant glassy hydrogel exhibits record-breaking Young's modulus (469.7 MPa), tensile strength (19.2 MPa), and exceptional environmental stability. Moreover, the reversible softening and vitrification induced by the breakage and reforming of coordination bonds endows glassy hydrogel with structural programmability, allowing for the construction of integrated auxetic hydrogel (IAH). The IAH demonstrates enhanced mechanical properties compared to the auxetic skeleton alone while maintaining a negative Poisson's ratio over a wide strain range of 0–29%. This study provides a promising engineering route for the development of advanced glassy hydrogels.\",\"PeriodicalId\":228,\"journal\":{\"name\":\"Small\",\"volume\":\"72 1\",\"pages\":\"\"},\"PeriodicalIF\":13.0000,\"publicationDate\":\"2025-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/smll.202502949\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smll.202502949","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

玻璃水凝胶在环境温度下保持独特的玻璃状态,在工程应用中很有吸引力。然而,由于物理交联弱,现有的玻璃状水凝胶往往存在强度差、刚度不足和环境稳定性差的问题。在此,我们采用醋酸铜辅助策略,通过在聚丙烯酸(PAA)和聚乙烯醇(PVA)组成的网络中引入稳健的配位键,提出了一种超强玻璃水凝胶。乙酸阴离子的存在创造了一个相对碱性的环境,它使PAA的羧基去质子化。这种去质子化反应暴露了羧酸基团,这些羧酸基团很容易与铜离子配合,在玻璃态中建立了一个密集的交联网络。所得玻璃水凝胶具有破纪录的杨氏模量(469.7 MPa)、抗拉强度(19.2 MPa)和优异的环境稳定性。此外,由配位键断裂和重整引起的可逆软化和玻璃化使玻璃状水凝胶具有结构可编程性,从而允许构建集成的auxetic水凝胶(IAH)。在0-29%的应变范围内保持负泊松比的同时,IAH的力学性能比单独的缺失骨架增强。该研究为开发先进的玻璃状水凝胶提供了一条有前途的工程路线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Copper-Coordination Engineered Glassy Hydrogels Featuring Ultrastiffness and Structural Programmability

Copper-Coordination Engineered Glassy Hydrogels Featuring Ultrastiffness and Structural Programmability
Glassy hydrogels, which maintain a distinctive glassy state at ambient temperature, are appealing for engineering applications. Nevertheless, the existing glassy hydrogels often suffer from inferior strength, inadequate stiffness, and environmental stability caused by weak physical cross-linking. Herein, we present an ultrastiff and ultrastrong glassy hydrogel by introducing robust coordination bonds into a network composed of polyacrylic acid (PAA) and polyvinyl alcohol (PVA), using a copper acetate-assisted strategy. The presence of acetate anions creates a relatively alkaline environment, which deprotonates the carboxyl groups of PAA. This deprotonation exposes carboxylate groups that readily coordinate with copper ions, establishing a densely cross-linked network in the glassy state. The resultant glassy hydrogel exhibits record-breaking Young's modulus (469.7 MPa), tensile strength (19.2 MPa), and exceptional environmental stability. Moreover, the reversible softening and vitrification induced by the breakage and reforming of coordination bonds endows glassy hydrogel with structural programmability, allowing for the construction of integrated auxetic hydrogel (IAH). The IAH demonstrates enhanced mechanical properties compared to the auxetic skeleton alone while maintaining a negative Poisson's ratio over a wide strain range of 0–29%. This study provides a promising engineering route for the development of advanced glassy hydrogels.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信