Sihwan Lee, Yong Eun Cho, Ho-Young Kim, Jeong-Yun Sun
{"title":"通过动态共价交联剂实现可逆、宽范围机械性能调制的光调谐弹性体","authors":"Sihwan Lee, Yong Eun Cho, Ho-Young Kim, Jeong-Yun Sun","doi":"10.1002/smll.202412657","DOIUrl":null,"url":null,"abstract":"Modulating the mechanical properties of soft materials with light is essential for achieving customizable functionalities. However, existing photo-responsive materials suffer from limited mechanical performance and a restricted tunable range. Here, a photo-tunable elastomer is developed by incorporating a urethane acrylate network with selenosulfide-based dynamic covalent crosslinkers, achieving high tensile strength exceeding 1.2 MPa in their stiff state and variable Young's modulus within a 0.8 MPa range. These crosslinkers undergo selenosulfide photo-metathesis, gradually breaking under ultraviolet light and reforming under visible light, enabling fine control over the modulus, strength, and stretchability of the elastomer. In terms of controllability, the design supports multiple tunable states, which allow for the use of intermediate mechanical properties. Moreover, by modeling the crosslinking density changes with reaction kinetics, modulus variation is predicted as a function of light exposure time. The light-induced modulation facilitates localized mechanical property adjustments, generating transformable multi-material structures and enhancing fracture resistance. Integrating these crosslinkers into different polymer networks provides a strategy for creating various photo-tunable elastomers and gels.","PeriodicalId":228,"journal":{"name":"Small","volume":"7 1","pages":""},"PeriodicalIF":13.0000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Photo-Tunable Elastomers Enabling Reversible, Broad-Range Modulation of Mechanical Properties Via Dynamic Covalent Crosslinkers\",\"authors\":\"Sihwan Lee, Yong Eun Cho, Ho-Young Kim, Jeong-Yun Sun\",\"doi\":\"10.1002/smll.202412657\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Modulating the mechanical properties of soft materials with light is essential for achieving customizable functionalities. However, existing photo-responsive materials suffer from limited mechanical performance and a restricted tunable range. Here, a photo-tunable elastomer is developed by incorporating a urethane acrylate network with selenosulfide-based dynamic covalent crosslinkers, achieving high tensile strength exceeding 1.2 MPa in their stiff state and variable Young's modulus within a 0.8 MPa range. These crosslinkers undergo selenosulfide photo-metathesis, gradually breaking under ultraviolet light and reforming under visible light, enabling fine control over the modulus, strength, and stretchability of the elastomer. In terms of controllability, the design supports multiple tunable states, which allow for the use of intermediate mechanical properties. Moreover, by modeling the crosslinking density changes with reaction kinetics, modulus variation is predicted as a function of light exposure time. The light-induced modulation facilitates localized mechanical property adjustments, generating transformable multi-material structures and enhancing fracture resistance. Integrating these crosslinkers into different polymer networks provides a strategy for creating various photo-tunable elastomers and gels.\",\"PeriodicalId\":228,\"journal\":{\"name\":\"Small\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":13.0000,\"publicationDate\":\"2025-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/smll.202412657\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smll.202412657","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Photo-Tunable Elastomers Enabling Reversible, Broad-Range Modulation of Mechanical Properties Via Dynamic Covalent Crosslinkers
Modulating the mechanical properties of soft materials with light is essential for achieving customizable functionalities. However, existing photo-responsive materials suffer from limited mechanical performance and a restricted tunable range. Here, a photo-tunable elastomer is developed by incorporating a urethane acrylate network with selenosulfide-based dynamic covalent crosslinkers, achieving high tensile strength exceeding 1.2 MPa in their stiff state and variable Young's modulus within a 0.8 MPa range. These crosslinkers undergo selenosulfide photo-metathesis, gradually breaking under ultraviolet light and reforming under visible light, enabling fine control over the modulus, strength, and stretchability of the elastomer. In terms of controllability, the design supports multiple tunable states, which allow for the use of intermediate mechanical properties. Moreover, by modeling the crosslinking density changes with reaction kinetics, modulus variation is predicted as a function of light exposure time. The light-induced modulation facilitates localized mechanical property adjustments, generating transformable multi-material structures and enhancing fracture resistance. Integrating these crosslinkers into different polymer networks provides a strategy for creating various photo-tunable elastomers and gels.
期刊介绍:
Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments.
With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology.
Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.