Yang Liu, Ye Wu, Anastasiia Sokolova, Xinmin Shi, Stephen V. Kershaw, Yusheng Wu, Lakshminarayana Polavarapu, Xiaoming Li, Andrey L. Rogach
{"title":"te掺杂双钙钛矿Cs2ZrCl6纳米晶体与体积的光致发光:来自温度依赖光谱的见解","authors":"Yang Liu, Ye Wu, Anastasiia Sokolova, Xinmin Shi, Stephen V. Kershaw, Yusheng Wu, Lakshminarayana Polavarapu, Xiaoming Li, Andrey L. Rogach","doi":"10.1002/smll.202501342","DOIUrl":null,"url":null,"abstract":"Although bulk crystals of lead-free vacancy-ordered double perovskites demonstrated a highly efficient emission, their nanocrystals (NCs) counterparts exhibit inferior optical performance. To understand the reasons behind this phenomenon, Cs<sub>2</sub>ZrCl<sub>6</sub>:Te<sup>4+</sup> double perovskite NCs are synthesized, and their optical properties are compared with their bulk powders. Temperature-dependent spectroscopy revealed that the NCs sustain a thermal sensitization of the intermediate trap state, which is located between the self-trapped state of the host (Cs<sub>2</sub>ZrCl<sub>6</sub>) and the triplet states of the dopant (Te<sup>4+</sup>). This opens up a pathway for the non-radiative recombination, and thus decreases the energy transfer efficiency from host to dopant. Importantly, this pathway is suppressed in larger (40 nm) Cs<sub>2</sub>ZrCl<sub>6</sub>:Te<sup>4+</sup> NCs, resulting in their photoluminescence quantum yield of 24%, as compared to 7% for the 22 nm NCs. Furthermore, the emission spectral range of these double perovskite NCs is shown to extended into near-infrared by incorporating rare-earth ions as additional dopants. The study has established a crucial relation between the optical properties and the size effect in lead-free vacancy-ordered double perovskites and thus lays a foundation for further improvement of their optical performance.","PeriodicalId":228,"journal":{"name":"Small","volume":"69 1","pages":""},"PeriodicalIF":13.0000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Photoluminescence of Te-Doped Double Perovskite Cs2ZrCl6 Nanocrystals Versus Bulk: Insights From Temperature-Dependent Spectroscopy\",\"authors\":\"Yang Liu, Ye Wu, Anastasiia Sokolova, Xinmin Shi, Stephen V. Kershaw, Yusheng Wu, Lakshminarayana Polavarapu, Xiaoming Li, Andrey L. Rogach\",\"doi\":\"10.1002/smll.202501342\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Although bulk crystals of lead-free vacancy-ordered double perovskites demonstrated a highly efficient emission, their nanocrystals (NCs) counterparts exhibit inferior optical performance. To understand the reasons behind this phenomenon, Cs<sub>2</sub>ZrCl<sub>6</sub>:Te<sup>4+</sup> double perovskite NCs are synthesized, and their optical properties are compared with their bulk powders. Temperature-dependent spectroscopy revealed that the NCs sustain a thermal sensitization of the intermediate trap state, which is located between the self-trapped state of the host (Cs<sub>2</sub>ZrCl<sub>6</sub>) and the triplet states of the dopant (Te<sup>4+</sup>). This opens up a pathway for the non-radiative recombination, and thus decreases the energy transfer efficiency from host to dopant. Importantly, this pathway is suppressed in larger (40 nm) Cs<sub>2</sub>ZrCl<sub>6</sub>:Te<sup>4+</sup> NCs, resulting in their photoluminescence quantum yield of 24%, as compared to 7% for the 22 nm NCs. Furthermore, the emission spectral range of these double perovskite NCs is shown to extended into near-infrared by incorporating rare-earth ions as additional dopants. The study has established a crucial relation between the optical properties and the size effect in lead-free vacancy-ordered double perovskites and thus lays a foundation for further improvement of their optical performance.\",\"PeriodicalId\":228,\"journal\":{\"name\":\"Small\",\"volume\":\"69 1\",\"pages\":\"\"},\"PeriodicalIF\":13.0000,\"publicationDate\":\"2025-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/smll.202501342\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smll.202501342","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Photoluminescence of Te-Doped Double Perovskite Cs2ZrCl6 Nanocrystals Versus Bulk: Insights From Temperature-Dependent Spectroscopy
Although bulk crystals of lead-free vacancy-ordered double perovskites demonstrated a highly efficient emission, their nanocrystals (NCs) counterparts exhibit inferior optical performance. To understand the reasons behind this phenomenon, Cs2ZrCl6:Te4+ double perovskite NCs are synthesized, and their optical properties are compared with their bulk powders. Temperature-dependent spectroscopy revealed that the NCs sustain a thermal sensitization of the intermediate trap state, which is located between the self-trapped state of the host (Cs2ZrCl6) and the triplet states of the dopant (Te4+). This opens up a pathway for the non-radiative recombination, and thus decreases the energy transfer efficiency from host to dopant. Importantly, this pathway is suppressed in larger (40 nm) Cs2ZrCl6:Te4+ NCs, resulting in their photoluminescence quantum yield of 24%, as compared to 7% for the 22 nm NCs. Furthermore, the emission spectral range of these double perovskite NCs is shown to extended into near-infrared by incorporating rare-earth ions as additional dopants. The study has established a crucial relation between the optical properties and the size effect in lead-free vacancy-ordered double perovskites and thus lays a foundation for further improvement of their optical performance.
期刊介绍:
Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments.
With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology.
Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.