WO3S1位点上d轨道单电子填充O─O π*键的高选择性生成羟基自由基

IF 13 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Small Pub Date : 2025-04-24 DOI:10.1002/smll.202412234
Hui Li, Tianhao Li, Ran Zhao, Hexiang Zhao, Haodong Ji, Fangyuan Chen, Zhurui Shen, Sihui Zhan
{"title":"WO3S1位点上d轨道单电子填充O─O π*键的高选择性生成羟基自由基","authors":"Hui Li, Tianhao Li, Ran Zhao, Hexiang Zhao, Haodong Ji, Fangyuan Chen, Zhurui Shen, Sihui Zhan","doi":"10.1002/smll.202412234","DOIUrl":null,"url":null,"abstract":"Hydroxyl radical (•OH) stemming from dissolved oxygen (O<sub>2</sub>) via photocatalysis is very attractive, but its poor selectivity and generation efficiency greatly limit its application. Herein, a kind of tungsten single site co-coordinated with O and S atoms (WO<sub>3</sub>S<sub>1</sub>) is established on ZnIn<sub>2</sub>S<sub>4</sub> (W-ZIS). The strong interactions in WO<sub>3</sub>S<sub>1</sub> shift the <i>d</i>-band center toward the Fermi level, enhancing the adsorption of O<sub>2</sub>. These interactions improve the accumulation of photo-generated electrons on WO<sub>3</sub>S<sub>1</sub>, facilitating the dissociation of O─O bonds in crucial intermediates and promoting the selective conversion from O<sub>2</sub> into •OH. This brings a state-of-the-art selectivity (40.2%) and generation efficiency (1668.90 mmol. g<sup>−1</sup>. L<sup>−1</sup>. h<sup>−1</sup>) of •OH production. Experimental results and theoretical simulations have elucidated that O<sub>2</sub> can be reduced by <i>d</i>-orbitals single electron (<span style=\"text-decoration:underline\">↑</span>, _, _, _, _, _) of WO<sub>3</sub>S<sub>1</sub> transfer to 2<i>p</i>-orbital O─O pi anti-bonding (<i>π*</i>: <i>p<sub>x</sub></i> and <i>p<sub>y</sub></i>), initially activating O<sub>2</sub>. Additionally, WO<sub>3</sub>S<sub>1</sub> sites facilitate the cleavage of H<sub>2</sub>O, optimizing proton adsorption through W─O orbital coupling in WO<sub>3</sub>S<sub>1</sub> and promoting the transformation of oxygen-containing intermediates. More importantly, <i>d</i>-orbitals single electron can fill O─O <i>π*</i> bond in •OOH intermediate, weakening the covalency of the O─O bond, mitigating the formation of H<sub>2</sub>O<sub>2</sub> and shortening the pathway for •OH generation.).","PeriodicalId":228,"journal":{"name":"Small","volume":"72 1","pages":""},"PeriodicalIF":13.0000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"d-Orbital Single Electron Filling O─O π* Bonds on WO3S1 Sites for Highly Selective Generation of Hydroxyl Radicals\",\"authors\":\"Hui Li, Tianhao Li, Ran Zhao, Hexiang Zhao, Haodong Ji, Fangyuan Chen, Zhurui Shen, Sihui Zhan\",\"doi\":\"10.1002/smll.202412234\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hydroxyl radical (•OH) stemming from dissolved oxygen (O<sub>2</sub>) via photocatalysis is very attractive, but its poor selectivity and generation efficiency greatly limit its application. Herein, a kind of tungsten single site co-coordinated with O and S atoms (WO<sub>3</sub>S<sub>1</sub>) is established on ZnIn<sub>2</sub>S<sub>4</sub> (W-ZIS). The strong interactions in WO<sub>3</sub>S<sub>1</sub> shift the <i>d</i>-band center toward the Fermi level, enhancing the adsorption of O<sub>2</sub>. These interactions improve the accumulation of photo-generated electrons on WO<sub>3</sub>S<sub>1</sub>, facilitating the dissociation of O─O bonds in crucial intermediates and promoting the selective conversion from O<sub>2</sub> into •OH. This brings a state-of-the-art selectivity (40.2%) and generation efficiency (1668.90 mmol. g<sup>−1</sup>. L<sup>−1</sup>. h<sup>−1</sup>) of •OH production. Experimental results and theoretical simulations have elucidated that O<sub>2</sub> can be reduced by <i>d</i>-orbitals single electron (<span style=\\\"text-decoration:underline\\\">↑</span>, _, _, _, _, _) of WO<sub>3</sub>S<sub>1</sub> transfer to 2<i>p</i>-orbital O─O pi anti-bonding (<i>π*</i>: <i>p<sub>x</sub></i> and <i>p<sub>y</sub></i>), initially activating O<sub>2</sub>. Additionally, WO<sub>3</sub>S<sub>1</sub> sites facilitate the cleavage of H<sub>2</sub>O, optimizing proton adsorption through W─O orbital coupling in WO<sub>3</sub>S<sub>1</sub> and promoting the transformation of oxygen-containing intermediates. More importantly, <i>d</i>-orbitals single electron can fill O─O <i>π*</i> bond in •OOH intermediate, weakening the covalency of the O─O bond, mitigating the formation of H<sub>2</sub>O<sub>2</sub> and shortening the pathway for •OH generation.).\",\"PeriodicalId\":228,\"journal\":{\"name\":\"Small\",\"volume\":\"72 1\",\"pages\":\"\"},\"PeriodicalIF\":13.0000,\"publicationDate\":\"2025-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/smll.202412234\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smll.202412234","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

溶解氧(O2)光催化生成羟基自由基(•OH)是一种极具吸引力的物质,但其选择性和生成效率较差,极大地限制了其应用。在ZnIn2S4 (W-ZIS)上建立了一种O和S原子共配的钨单位(WO3S1)。WO3S1中的强相互作用使d带中心向费米能级移动,增强了对O2的吸附。这些相互作用改善了WO3S1上光生电子的积累,促进了关键中间体中O─O键的解离,并促进了从O2到•OH的选择性转化。这带来了最先进的选择性(40.2%)和生成效率(1668.90 mmol)。克−1。L−1。h−1)。实验结果和理论模拟表明,WO3S1的d轨道单电子(↑,_,_,_,_,_,_,_)转移到2p轨道O─O π反键(π*: px和py), O2可以被还原,初始激活O2。此外,WO3S1位点有利于H2O的裂解,通过WO3S1中的W─O轨道偶联优化质子吸附,促进含氧中间体的转化。更重要的是,d轨道的单电子可以填充•OOH中间体中的O─O π*键,削弱O─O键的共价,减缓H2O2的形成,缩短•OH生成的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

d-Orbital Single Electron Filling O─O π* Bonds on WO3S1 Sites for Highly Selective Generation of Hydroxyl Radicals

d-Orbital Single Electron Filling O─O π* Bonds on WO3S1 Sites for Highly Selective Generation of Hydroxyl Radicals
Hydroxyl radical (•OH) stemming from dissolved oxygen (O2) via photocatalysis is very attractive, but its poor selectivity and generation efficiency greatly limit its application. Herein, a kind of tungsten single site co-coordinated with O and S atoms (WO3S1) is established on ZnIn2S4 (W-ZIS). The strong interactions in WO3S1 shift the d-band center toward the Fermi level, enhancing the adsorption of O2. These interactions improve the accumulation of photo-generated electrons on WO3S1, facilitating the dissociation of O─O bonds in crucial intermediates and promoting the selective conversion from O2 into •OH. This brings a state-of-the-art selectivity (40.2%) and generation efficiency (1668.90 mmol. g−1. L−1. h−1) of •OH production. Experimental results and theoretical simulations have elucidated that O2 can be reduced by d-orbitals single electron (, _, _, _, _, _) of WO3S1 transfer to 2p-orbital O─O pi anti-bonding (π*: px and py), initially activating O2. Additionally, WO3S1 sites facilitate the cleavage of H2O, optimizing proton adsorption through W─O orbital coupling in WO3S1 and promoting the transformation of oxygen-containing intermediates. More importantly, d-orbitals single electron can fill O─O π* bond in •OOH intermediate, weakening the covalency of the O─O bond, mitigating the formation of H2O2 and shortening the pathway for •OH generation.).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信