提高聚酰亚胺复合薄膜导热性的分子电刷接枝液晶异型结构填料

IF 18.5 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Kunpeng Ruan, Mukun Li, Yuheng Pang, Mukun He, Hua Guo, Xuetao Shi, Junwei Gu
{"title":"提高聚酰亚胺复合薄膜导热性的分子电刷接枝液晶异型结构填料","authors":"Kunpeng Ruan, Mukun Li, Yuheng Pang, Mukun He, Hua Guo, Xuetao Shi, Junwei Gu","doi":"10.1002/adfm.202506563","DOIUrl":null,"url":null,"abstract":"Hetero-structured thermally conductive fillers, benefiting from the low interfacial thermal resistance and fillers’ synergistic effect, have been proven to be the ideal choice for improving the thermal conductivities of polymer composites. However, hetero-structured fillers are usually disorderly distributed in the polymer matrix, hindering the further improvement of the efficiency of constructing thermal conduction pathways in polymer composites. This work proposes a new strategy to graft polymethyl methacrylate molecular brushes on the surfaces of fluorinated graphene@carbon nanotube (FG@CNT) hetero-structured thermally conductive fillers by atom transfer radical polymerization. FG@CNT is orderly arranged and presents the liquid crystalline state (LC-(FG@CNT), which is then introduced into the liquid crystalline polyimide (LC-PI) matrix with high intrinsic thermally conductivity to fabricate LC-(FG@CNT)/LC-PI thermally conductive composite films. The in-plane and through-plane thermal conductivities (<i>λ<sub>∥</sub></i>, <i>λ</i><sub>⊥</sub>) of 15 wt.% LC-(FG@CNT)/LC-PI films reach 5.66 and 0.76 W·m<sup>−1</sup>·K<sup>−1</sup>, respectively, which are 168.2% and 137.5% higher than those of the LC-PI films (<i>λ<sub>∥</sub></i> = 2.11 W·m<sup>−1</sup>·K<sup>−1</sup>, <i>λ</i><sub>⊥</sub> = 0.32 W·m<sup>−1</sup>·K<sup>−1</sup>), also significantly higher than those of 15 wt.% FG@CNT/LC-PI composite films (<i>λ<sub>∥</sub></i> = 4.72 W·m<sup>−1</sup>·K<sup>−1</sup>, <i>λ</i><sub>⊥</sub> = 0.74 W·m<sup>−1</sup>·K<sup>−1</sup>). Demonstrated by heat dissipation testing and finite element simulation, the LC-(FG@CNT)/LC-PI composite films show excellent thermal management capabilities and great application potential in the new generation of flexible electronic devices.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"48 1","pages":""},"PeriodicalIF":18.5000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Molecular Brush-Grafted Liquid Crystalline Hetero-Structured Fillers for Boosting Thermal Conductivity of Polyimide Composite Films\",\"authors\":\"Kunpeng Ruan, Mukun Li, Yuheng Pang, Mukun He, Hua Guo, Xuetao Shi, Junwei Gu\",\"doi\":\"10.1002/adfm.202506563\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hetero-structured thermally conductive fillers, benefiting from the low interfacial thermal resistance and fillers’ synergistic effect, have been proven to be the ideal choice for improving the thermal conductivities of polymer composites. However, hetero-structured fillers are usually disorderly distributed in the polymer matrix, hindering the further improvement of the efficiency of constructing thermal conduction pathways in polymer composites. This work proposes a new strategy to graft polymethyl methacrylate molecular brushes on the surfaces of fluorinated graphene@carbon nanotube (FG@CNT) hetero-structured thermally conductive fillers by atom transfer radical polymerization. FG@CNT is orderly arranged and presents the liquid crystalline state (LC-(FG@CNT), which is then introduced into the liquid crystalline polyimide (LC-PI) matrix with high intrinsic thermally conductivity to fabricate LC-(FG@CNT)/LC-PI thermally conductive composite films. The in-plane and through-plane thermal conductivities (<i>λ<sub>∥</sub></i>, <i>λ</i><sub>⊥</sub>) of 15 wt.% LC-(FG@CNT)/LC-PI films reach 5.66 and 0.76 W·m<sup>−1</sup>·K<sup>−1</sup>, respectively, which are 168.2% and 137.5% higher than those of the LC-PI films (<i>λ<sub>∥</sub></i> = 2.11 W·m<sup>−1</sup>·K<sup>−1</sup>, <i>λ</i><sub>⊥</sub> = 0.32 W·m<sup>−1</sup>·K<sup>−1</sup>), also significantly higher than those of 15 wt.% FG@CNT/LC-PI composite films (<i>λ<sub>∥</sub></i> = 4.72 W·m<sup>−1</sup>·K<sup>−1</sup>, <i>λ</i><sub>⊥</sub> = 0.74 W·m<sup>−1</sup>·K<sup>−1</sup>). Demonstrated by heat dissipation testing and finite element simulation, the LC-(FG@CNT)/LC-PI composite films show excellent thermal management capabilities and great application potential in the new generation of flexible electronic devices.\",\"PeriodicalId\":112,\"journal\":{\"name\":\"Advanced Functional Materials\",\"volume\":\"48 1\",\"pages\":\"\"},\"PeriodicalIF\":18.5000,\"publicationDate\":\"2025-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Functional Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/adfm.202506563\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202506563","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

异质结构导热填料由于具有较低的界面热阻和填料的协同效应,是提高聚合物复合材料导热性能的理想选择。然而,异质结构填料在聚合物基体中的无序分布,阻碍了聚合物复合材料中热传导通道构建效率的进一步提高。本研究提出了一种通过原子转移自由基聚合在氟化graphene@carbon纳米管(FG@CNT)异质结构导热填料表面接枝聚甲基丙烯酸甲酯分子刷的新策略。FG@CNT有序排列,呈现液晶态(LC-(FG@CNT)),然后将其引入具有高固有导热系数的液晶聚酰亚胺(LC- pi)基体中,制备LC-(FG@CNT)/LC- pi导热复合薄膜。15 wt.% LC-(FG@CNT)/LC- pi膜的面内和面内导热系数(λ∥,λ⊥)分别达到5.66和0.76 W·m−1·K−1,比LC- pi膜(λ∥= 2.11 W·m−1·K−1,λ⊥= 0.32 W·m−1·K−1)高168.2%和137.5%,也显著高于15 wt.% FG@CNT/LC- pi复合膜(λ∥= 4.72 W·m−1·K−1,λ⊥= 0.74 W·m−1·K−1)。通过散热测试和有限元模拟表明,LC-(FG@CNT)/LC- pi复合薄膜在新一代柔性电子器件中表现出优异的热管理能力和巨大的应用潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Molecular Brush-Grafted Liquid Crystalline Hetero-Structured Fillers for Boosting Thermal Conductivity of Polyimide Composite Films

Molecular Brush-Grafted Liquid Crystalline Hetero-Structured Fillers for Boosting Thermal Conductivity of Polyimide Composite Films
Hetero-structured thermally conductive fillers, benefiting from the low interfacial thermal resistance and fillers’ synergistic effect, have been proven to be the ideal choice for improving the thermal conductivities of polymer composites. However, hetero-structured fillers are usually disorderly distributed in the polymer matrix, hindering the further improvement of the efficiency of constructing thermal conduction pathways in polymer composites. This work proposes a new strategy to graft polymethyl methacrylate molecular brushes on the surfaces of fluorinated graphene@carbon nanotube (FG@CNT) hetero-structured thermally conductive fillers by atom transfer radical polymerization. FG@CNT is orderly arranged and presents the liquid crystalline state (LC-(FG@CNT), which is then introduced into the liquid crystalline polyimide (LC-PI) matrix with high intrinsic thermally conductivity to fabricate LC-(FG@CNT)/LC-PI thermally conductive composite films. The in-plane and through-plane thermal conductivities (λ, λ) of 15 wt.% LC-(FG@CNT)/LC-PI films reach 5.66 and 0.76 W·m−1·K−1, respectively, which are 168.2% and 137.5% higher than those of the LC-PI films (λ = 2.11 W·m−1·K−1, λ = 0.32 W·m−1·K−1), also significantly higher than those of 15 wt.% FG@CNT/LC-PI composite films (λ = 4.72 W·m−1·K−1, λ = 0.74 W·m−1·K−1). Demonstrated by heat dissipation testing and finite element simulation, the LC-(FG@CNT)/LC-PI composite films show excellent thermal management capabilities and great application potential in the new generation of flexible electronic devices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信